Covalent coupling of Spike’s receptor binding domain to a multimeric carrier produces a high immune response against SARS-CoV-2 (original) (raw)

Production of a Highly Immunogenic Antigen from SARS-CoV-2 by Covalent Coupling of the Receptor Binding Domain of Spike Protein to a Multimeric Carrier

2021

Since the discovery of SARS-CoV-2, several antigens have been proposed to be part of COVID-19 vaccines. The receptor binding domain (RBD) of Spike protein is one of the promising candidates to develop effective vaccines since it can induce potent neutralizing antibodies. We previously reported the production of RBD in Pichia pastoris and showed it is structurally identical to the protein produced in mammalian HEK-293T cells. In this work we designed an RBD multimer construct with the purpose of increasing RBD immunogenicity. We produced multimeric particles by a transpeptidation reaction between the RBD expressed in P. pastoris and Lumazine Synthase from Brucella abortus (BLS), which is a highly immunogenic and very stable decameric protein of 170 kDa. We vaccinated mice with two doses 30 days apart, and then we measured humoral immune response. When the number of RBD copies coupled to BLS was high (6-7 RBD molecules per BLS decamer, in average), the immune response was significantl...

Process development for an effective COVID-19 vaccine candidate harboring recombinant SARS-CoV-2 delta plus receptor binding domain produced by Pichia pastoris

Scientific Reports

Recombinant protein-based SARS-CoV-2 vaccines are needed to fill the vaccine equity gap. Because protein-subunit based vaccines are easier and cheaper to produce and do not require special storage/transportation conditions, they are suitable for low-/middle-income countries. Here, we report our vaccine development studies with the receptor binding domain of the SARS-CoV-2 Delta Plus strain (RBD-DP) which caused increased hospitalizations compared to other variants. First, we expressed RBD-DP in the Pichia pastoris yeast system and upscaled it to a 5-L fermenter for production. After three-step purification, we obtained RBD-DP with > 95% purity from a protein yield of > 1 g/L of supernatant. Several biophysical and biochemical characterizations were performed to confirm its identity, stability, and functionality. Then, it was formulated in different contents with Alum and CpG for mice immunization. After three doses of immunization, IgG titers from sera reached to > 106 and ...

The SARS-CoV-2 receptor-binding domain expressed in Pichia pastoris as a candidate vaccine antigen

1.The effort to develop vaccines based on economically accessible technological platforms available by developing countries vaccine manufacturers is essential to extend the immunization to the whole world population and to achieve the desired herd immunity, necessary to end the COVID-19 pandemic. Here we report on the development of a SARS-CoV-2 receptor-binding domain (RBD) protein, expressed in yeast Pichia pastoris. The RBD was modified with addition of flexible N- and C-terminal amino acid extensions aimed to modulate the protein/protein interactions and facilitate protein purification. Fermentation with yeast extract culture medium yielded 30–40 mg/L. After purification by immobilized metal ion affinity chromatography and hydrophobic interaction chromatography, the RBD protein was characterized by mass-spectrometry, circular dichroism, and binding affinity to angiotensin-converting enzyme 2 (ACE2) receptor. The recombinant protein shows high antigenicity with convalescent human...

Identification of an optimized Receptor-Binding Domain Subunit Vaccine against SARS-CoV-2

Journal of Immunology, 2023

Current vaccine efforts to combat SARS-CoV-2 are focused on the whole spike protein administered as mRNA, viral vector, or protein subunit. However, the SARS-CoV-2 receptor-binding domain (RBD) is the immunodominant portion of the spike protein, accounting for 90% of serum neutralizing activity. In this study, we constructed several versions of RBD and together with aluminum hydroxide or DDA (dimethyldioctadecylammonium bromide)/TDB (D-(+)-trehalose 6,69-dibehenate) adjuvant evaluated immunogenicity in mice. We generated human angiotensin-converting enzyme 2 knock-in mice to evaluate vaccine efficacy in vivo following viral challenge. We found that 1) subdomain (SD)1 was essential for the RBD to elicit maximal immunogenicity; 2) RBDSD1 produced in mammalian HEK cells elicited better immunogenicity than did protein produced in insect or yeast cells; 3) RBDSD1 combined with the CD4 Th1 adjuvant DDA/ TDB produced higher neutralizing Ab responses and stronger CD4 T cell responses than did aluminum hydroxide; 4) addition of monomeric human Fc receptor to RBDSD1 (RBDSD1Fc) significantly enhanced immunogenicity and neutralizing Ab titers; 5) the Beta version of RBDSD1Fc provided a broad range of cross-neutralization to multiple antigenic variants of concern, including Omicron; and 6) the Beta version of RBDSD1Fc with DDA/TDB provided complete protection against virus challenge in the knock-in mouse model. Thus, we have identified an optimized RBD-based subunit vaccine suitable for clinical trials.

An Engineered Receptor-Binding Domain Improves the Immunogenicity of Multivalent SARS-CoV-2 Vaccines

MBio, 2021

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein mediates viral entry into cells expressing angiotensin-converting enzyme 2 (ACE2). The S protein engages ACE2 through its receptor-binding domain (RBD), an independently folded 197-amino-acid fragment of the 1,273-amino-acid S-protein protomer. The RBD is the primary SARS-CoV-2 neutralizing epitope and a critical target of any SARS-CoV-2 vaccine. Here, we show that this RBD conjugated to each of two carrier proteins elicited more potent neutralizing responses in immunized rodents than did a similarly conjugated proline-stabilized S-protein ectodomain. Nonetheless, the native RBD is expressed inefficiently, limiting its usefulness as a vaccine antigen. However, we show that an RBD engineered with four novel glycosylation sites (gRBD) is expressed markedly more efficiently and generates a more potent neutralizing responses as a DNA vaccine antigen than the wild-type RBD or the full-length S protein, especially when fused to multivalent carriers, such as a Helicobacter pylori ferritin 24-mer. Further, gRBD is more immunogenic than the wild-type RBD when administered as a subunit protein vaccine. Our data suggest that multivalent gRBD antigens can reduce costs and doses, and improve the immunogenicity, of all major classes of SARS-CoV-2 vaccines. IMPORTANCE All available vaccines for coronavirus disease 2019 (COVID-19) express or deliver the full-length SARS-CoV-2 spike (S) protein. We show that this antigen is not optimal, consistent with observations that the vast majority of the neutralizing response to the virus is focused on the S-protein receptor-binding domain (RBD). However, this RBD is not expressed well as an independent domain, especially when expressed as a fusion protein with a multivalent scaffold. We therefore engineered a more highly expressed form of the SARS-CoV-2 RBD by introducing four glycosylation sites into a face of the RBD normally occluded in the full S protein. We show that this engineered protein, gRBD, is more immunogenic than the wild-type RBD or the full-length S protein in both genetic and protein-delivered vaccines.

Development of a Cost-Effective Process for the Heterologous Production of SARS-CoV-2 Spike Receptor Binding Domain Using Pichia pastoris in Stirred-Tank Bioreactor

Fermentation

SARS-CoV-2 was identified as the pathogenic agent causing the COVID-19 pandemic. Among the proteins codified by this virus, the Spike protein is one of the most-external and -exposed. A fragment of the Spike protein, named the receptor binding domain (RBD), interacts with the ACE2 receptors of human cells, allowing the entrance of the viruses. RBD has been proposed as an interesting protein for the development of diagnosis tools, treatment, and prevention of the disease. In this work, a method for recombinant RBD production using Pichia pastoris as a cell factory in a stirred-tank bioreactor (SRTB) up to 7 L was developed. Using a basal saline medium with glycerol, methanol, and compressed air in a four-stage procedure, around 500 mg/L of the raw RBD produced by yeasts (yRBD) and 206 mg/L of purified (>95%) RBD were obtained. Thereby, the proposed method represents a feasible, simple, scalable, and inexpensive procedure for the obtention of RBD for diagnosis kits and vaccines’ fo...

Comparative Immunomodulatory Evaluation of the Receptor Binding Domain of the SARS-CoV-2 Spike Protein; a Potential Vaccine Candidate Which Imparts Potent Humoral and Th1 Type Immune Response in a Mouse Model

Frontiers in Immunology, 2021

The newly emerged novel coronavirus, SARS-CoV-2, the causative agent of COVID-19 has proven to be a threat to the human race globally, thus, vaccine development against SARS-CoV-2 is an unmet need driving mass vaccination efforts. The receptor binding domain of the spike protein of this coronavirus has multiple neutralizing epitopes and is associated with viral entry. Here we have designed and characterized the SARS-CoV-2 spike protein fragment 330-526 as receptor binding domain 330-526 (RBD330-526) with two native glycosylation sites (N331 and N343); as a potential subunit vaccine candidate. We initially characterized RBD330-526 biochemically and investigated its thermal stability, humoral and T cell immune response of various RBD protein formulations (with or without adjuvant) to evaluate the inherent immunogenicity and immunomodulatory effect. Our result showed that the purified RBD immunogen is stable up to 72 h, without any apparent loss in affinity or specificity of interactio...

A COVID-19 vaccine candidate using SpyCatcher multimerization of the SARS-CoV-2 spike protein receptor-binding domain induces potent neutralising antibody responses

Nature Communications

There is need for effective and affordable vaccines against SARS-CoV-2 to tackle the ongoing pandemic. In this study, we describe a protein nanoparticle vaccine against SARS-CoV-2. The vaccine is based on the display of coronavirus spike glycoprotein receptor-binding domain (RBD) on a synthetic virus-like particle (VLP) platform, SpyCatcher003-mi3, using SpyTag/SpyCatcher technology. Low doses of RBD-SpyVLP in a prime-boost regimen induce a strong neutralising antibody response in mice and pigs that is superior to convalescent human sera. We evaluate antibody quality using ACE2 blocking and neutralisation of cell infection by pseudovirus or wild-type SARS-CoV-2. Using competition assays with a monoclonal antibody panel, we show that RBD-SpyVLP induces a polyclonal antibody response that recognises key epitopes on the RBD, reducing the likelihood of selecting neutralisation-escape mutants. Moreover, RBD-SpyVLP is thermostable and can be lyophilised without losing immunogenicity, to f...

A Novel Double Mosaic Virus-like Particle-Based Vaccine against SARS-CoV-2 Incorporates Both Receptor Binding Motif (RBM) and Fusion Domain

Vaccines, 2021

COVID-19 has emerged, and has rapidly become a major health problem worldwide, causing millions of mortalities. Vaccination against COVID-19 is the most efficient way to stop the pandemic. The goal of vaccines is to induce neutralizing antibodies against SARS-CoV-2 virus. Here, we present a novel double mosaic virus-like particle (VLP) displaying two independent neutralizing epitopes, namely the receptor binding motif (RBM) located in S1 and the fusion peptide (AA 817–855) located in S2. CuMVTT virus-like particles were used as VLP scaffold and both domains were genetically fused in the middle of CuMVTT subunits, which co-assembled into double mosaic particles (CuMVTT-DF). A single fusion mosaic particle (CuMVTT-FP) containing the fusion peptide only was used for comparison. The vaccines were produced in E. coli, and electron microscopy and dynamic light scattering confirmed their integrity and homogeneity. In addition, the CuMVTT-DF vaccine was well recognized by ACE2 receptor, ind...