L-orthogonal polynomials associated with related measures (original) (raw)

Abstract

A positive measure ψ defined on [a, b] such that its moments μ n = b a t n dψ(t) exist for n = 0, ±1, ±2,. .. , can be called a strong positive measure on [a, b]. When 0 a < b ∞, the sequence of polynomials {Q n } defined by b a t −n+s Q n (t) dψ(t) = 0, s = 0, 1,. .. ,n − 1, exist and they are referred here as L-orthogonal polynomials. We look at the connection between two sequences of L-orthogonal polynomials {Q (1) n } and {Q (0) n } associated with two closely related strong positive measures ψ 1 and ψ 0 defined on [a, b]. To be precise, the measures are related to each other by (t − κ) dψ 1 (t) = γ dψ 0 (t), where (t − κ)/γ is positive when t ∈ (a, b). As applications of our study, numerical generation of new L-orthogonal polynomials and monotonicity properties of the zeros of a certain class of L-orthogonal polynomials are looked at.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (21)

  1. M.I. Bueno Cachadina, A. Deaño, E. Tavernetti, A new algorithm for computing the Geronimus transformation with large shifts, Numer. Algorithms 54 (2010) 101-139.
  2. A. Bultheel, C. Díaz-Mendoza, P. González-Vera, R. Orive, Orthogonal Laurent polynomials and quadrature formulas for unbounded intervals: I. Gauss- type formulas, Rocky Mountain J. Math. 33 (2003) 585-608.
  3. T.S. Chihara, An Introduction to Orthogonal Polynomials, Mathematics and its Applications Series, Gordon and Breach, New York, 1978.
  4. D.K. Dimitrov, A. Sri Ranga, Monotonicity of zeros of orthogonal Laurent polynomials, Methods Appl. Anal. 9 (2002) 1-12.
  5. A.K. Common, J.H. McCabe, The symmetric strong moment problem, J. Comput. Appl. Math. 67 (1996) 327-341.
  6. S.C. Cooper, W.B. Jones, W.J. Thron, Asymptotics of orthogonal L-polynomials for log-normal distributions, Constr. Approx. 8 (1992) 59-67.
  7. D.K. Dimitrov, M.V. de Mello, F.R. Rafaeli, Monotonicity of zeros of Jacobi-Sobolev-type orthogonal polynomials, Appl. Numer. Math. 60 (2010) 236-276.
  8. W.L. Ferrar, Integral Calculus, Oxford Univ. Press, London, 1958.
  9. M.E.H. Ismail, Monotonicity of zeros of orthogonal polynomials, in: D. Stanton (Ed.), q-Series and Partitions, Springer-Verlag, New York, 1989, pp. 177- 190.
  10. W.B. Jones, O. Njåstad, W.J. Thron, Two point Padé expansions for a family of analytic functions, J. Comput. Appl. Math. 9 (1983) 105-123.
  11. W.B. Jones, W.J. Thron, Two-point Padé tables and T-fractions, Bull. Amer. Math. Soc. 83 (1977) 388-390.
  12. W.B. Jones, W.J. Thron, H. Waadeland, A strong Stieltjes moment problem, Trans. Amer. Math. Soc. 261 (1980) 503-528.
  13. A. Markov, Sur les racines de certain équations (second note), Math. Ann. 27 (1886) 177-182.
  14. J.H. McCabe, A formal extension of the Padé table to include two point Padé quotients, J. Inst. Math. Appl. 15 (1975) 363-372.
  15. P.I. Pastro, Orthogonal polynomials and some q-beta integrals of Ramanujan, J. Math. Anal. Appl. 112 (1985) 517-540.
  16. F.R. Rafaeli, Zeros de polinômios ortogonais na reta real, Tese de Doutorado at the Universidade Estadual de Campinas, SP, Brazil, 2010.
  17. A. Sri Ranga, Another quadrature rule of highest algebraic degree of precision, Numer. Math. 68 (1994) 283-294.
  18. A. Sri Ranga, Symmetric orthogonal polynomials and the associated orthogonal L-polynomials, Proc. Amer. Math. Soc. 123 (1995) 3135-3141.
  19. A. Sri Ranga, W. Van Assche, Blumenthal's theorem for Laurent orthogonal polynomials, J. Approx. Theory 117 (2002) 255-278.
  20. D.V. Widder, Advance Calculus, Dover, New York, 1989.
  21. A. Zhedanov, The "classical" Laurent biorthogonal polynomials, J. Comput. Appl. Math. 98 (1998) 121-147.