On the stochastic engine of transmittable diseases in exponentially growing populations (original) (raw)
Related papers
The Evolutionary Dynamics of Stochastic Epidemic Model with Nonlinear Incidence Rate
Bulletin of mathematical biology, 2015
A stochastic SIRS epidemic model with nonlinear incidence rate and varying population size is formulated to investigate the effect of stochastic environmental variability on inter-pandemic transmission dynamics of influenza A. Sufficient conditions for extinction and persistence of the disease are established. In the case of persistence, the existence of endemic stationary distribution is proved and the distance between stochastic solutions and the endemic equilibrium of the corresponding deterministic system in the time mean sense is estimated. Based on realistic parameters of influenza A in humans, numerical simulations have been performed to verify/extend our analytical results. It is found that: (i) the deterministic threshold of the influenza A extinction [Formula: see text] may exist and the threshold parameter will be overestimated in case of neglecting the impaction of environmental noises; (ii) the presence of environmental noises is capable of supporting the irregular recu...
Emergence of oscillations in a simple epidemic model with demographic data
Royal Society Open Science
A simple susceptible–infectious–removed epidemic model for smallpox, with birth and death rates based on historical data, produces oscillatory dynamics with remarkably accurate periodicity. Stochastic population data cause oscillations to be sustained rather than damped, and data analysis regarding the oscillations provides insights into the same set of population data. Notably, oscillations arise naturally from the model, instead of from a periodic forcing term or other exogenous mechanism that guarantees oscillation: the model has no such mechanism. These emergent natural oscillations display appropriate periodicity for smallpox, even when the model is applied to different locations and populations. The model and datasets, in turn, offer new observations about disease dynamics and solution trajectories. These results call for renewed attention to relatively simple models, in combination with datasets from real outbreaks.
Eight challenges for stochastic epidemic models involving global transmission
Epidemics, 2014
The most basic stochastic epidemic models are those involving global transmission, meaning that infection rates depend only on the type and state of the individuals involved, and not on their location in the population. Simple as they are, there are still several open problems for such models. For example, when will such an epidemic go extinct and with what probability (questions depending on the population being fixed, changing or growing)? How can a model be defined explaining the sometimes observed scenario of frequent mid-sized epidemic outbreaks? How can evolution of the infectious agent transmission rates be modelled and fitted to data in a robust way?
Journal of Theoretical Biology, 2011
Despite temporally-forced transmission driving many infectious diseases, analytical insight into its role when combined with stochastic disease processes and non-linear transmission has received little attention. During disease outbreaks, however, the absence of saturation effects early on in well-mixed populations mean that epidemic models may be linearised and we can calculate outbreak properties, including the effects of temporal forcing on fade-out, disease emergence and system dynamics, via analysis of the associated master equations. The approach is illustrated for the unforced and forced SIR and SEIR epidemic models. We demonstrate that in unforced models, initial conditions (and any uncertainty therein) play a stronger role in driving outbreak properties than the basic reproduction number , while the same properties are highly sensitive to small amplitude temporal forcing, particularly when is small. Although illustrated for the SIR and SEIR models, the master equation framework may be applied to more realistic models, although analytical intractability scales rapidly with increasing system dimensionality. One application of these methods is obtaining a better understanding of the rate at which vector-borne and waterborne infectious diseases invade new regions given variability in environmental drivers, a particularly important question when addressing potential shifts in the global distribution and intensity of infectious diseases under climate change.
Disease Extinction Versus Persistence in Discrete-Time Epidemic Models
Bulletin of Mathematical Biology
We focus on discrete-time infectious disease models in populations that are governed by constant, geometric, Beverton-Holt or Ricker demographic equations, and give a method for computing the basic reproduction number, R 0. When R 0 < 1 and the demographic population dynamics are asymptotically constant or under geometric growth (non-oscillatory), we prove global asymptotic stability of the disease-free equilibrium of the disease models. Under the same demographic assumption, when R 0 > 1, we prove uniform persistence of the disease. We apply our theoretical results to specific discrete-time epidemic models that are formulated for SEIR infections, cholera in humans and anthrax in animals. Our simulations show that a unique endemic equilibrium of each of the three specific disease models is asymptotically stable whenever R 0 > 1.
Predicting extinction rates in stochastic epidemic models
Journal of Statistical Mechanics: Theory and Experiment, 2009
We investigate the stochastic extinction processes in a class of epidemic models. Motivated by the process of natural disease extinction in epidemics, we examine the rate of extinction as a function of disease spread. We show that the effective entropic barrier for extinction in a susceptible-infectedsusceptible epidemic model displays scaling with the distance to the bifurcation point, with an unusual critical exponent. We make a direct comparison between predictions and numerical simulations. We also consider the effect of non-Gaussian vaccine schedules, and show numerically how the extinction process may be enhanced when the vaccine schedules are Poisson distributed.
Stability of Epidemic Models with Evolution
Studies in Applied Mathematics, 2007
Epidemic models are considered where the diffusion of individuals is influenced by intraspecific competition pressures and are weakly affected by different classes. The nonlinear stability of some of the models is proved by introducing new Liapunov functions.
Physical Review E, 2012
We analyze the dynamics of the susceptible-infected-susceptible epidemic model when the transmission rate displays Gaussian white noise fluctuations around its mean value. We obtain analytic expressions for the final size distribution of infectives and the mean infected number of individuals. The model displays a variety of noise-induced transitions as a function of the basic reproductive rate and the noise intensity. We derive a threshold criterion for epidemic invasion in the presence of external noise and determine the mean epidemic duration and the mean epidemic extinction time.
Stochastic stability and instability of an epidemic model with relapse
Applied Mathematics and Computation, 2018
In this paper, we present a stochastic epidemic model with relapse. First, we prove global positivity of solutions. Then we discuss stability of the disease-free equilibrium state and we show extinction of epidemics using Lyapunov functions. Furthermore we show persistence of the disease under some conditions on parameters of the model. Our numerical simulations confirm the analytical results.
A dynamical study on stochastic reaction diffusion epidemic model with nonlinear incidence rate
The European Physical Journal Plus
The current study deals with the stochastic reaction-diffusion epidemic model numerically with two proposed schemes. Such models have many applications in the disease dynamics of wildlife, human life, and others. During the last decade, it is observed that the epidemic models cannot predict the accurate behavior of infectious diseases. The empirical data gained about the spread of the disease shows non-deterministic behavior. It is a strong challenge for researchers to consider stochastic epidemic models. The effect of the stochastic process is analyzed. So, the SIR epidemic model is considered under the influence of the stochastic process. The time noise term is taken as the stochastic source. The coefficient of the stochastic term is a Borel function, and it is used to control the random behavior in the solutions. The proposed stochastic backward Euler scheme and the proposed stochastic implicit finite difference scheme (IFDS) are used for the numerical solution of the underlying model. Both schemes are consistent in the mean square sense. The stability of the schemes is proven with Von-Neumann criteria and schemes are unconditionally stable. The proposed stochastic backward Euler scheme converges toward a disease-free equilibrium and does not converge toward an endemic equilibrium but also possesses negative behavior. The proposed stochastic IFD scheme converges toward disease-free equilibrium and endemic equilibrium. This scheme also preserves positivity. The graphical behavior of the stochastic SIR model is much similar to the classical SIR epidemic model when noise strength approaches zero. The three-dimensional plots of the susceptible and infected individuals are drawn for two cases of endemic equilibrium and disease-free equilibriums. The efficacy of the proposed scheme is shown in the graphical behavior of the test problem for the various values of the parameters.