Signatures of gate-driven out of equilibrium superconductivity in Ta/InAs nanowires (original) (raw)

Abstract

Understanding the microscopic origin of the gate-controlled supercurrent (GCS) in superconducting nanobridges is crucial for engineering superconducting switches suitable for a variety of electronic applications. The origin of GCS is controversial, and various mechanisms have been proposed to explain it. In this work, we have investigated the GCS in a Ta layer deposited on the surface of InAs nanowires. Comparison between switching current distributions at opposite gate polarities and between the gate dependence of two opposite side gates with different nanowire−gate spacings shows that the GCS is determined by the power dissipated by the gate leakage. We also found a substantial difference between the influence of the gate and elevated bath temperature on the magnetic field dependence of the supercurrent. Detailed analysis of the switching dynamics at high gate voltages shows that the device is driven into the multiple phase slips regime by high-energy fluctuations arising from the leakage current.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (50)

  1. A. N. McCaughan and K. K. Berggren, "A superconducting-nanowire three-terminal electrothermal device," Nano letters 14, 5748-5753 (2014).
  2. A. N. McCaughan, V. B. Verma, S. M. Buckley, J. All- maras, A. Kozorezov, A. Tait, S. Nam, and J. Shain- line, "A superconducting thermal switch with ultrahigh impedance for interfacing superconductors to semicon- ductors," Nature electronics 2, 451-456 (2019).
  3. S. Frasca and E. Charbon, "Hybrid superconductor- semiconductor electronics," Nature Electronics 2, 433- 434 (2019).
  4. D. A. Buck, "The cryotron-a superconductive computer component," Proceedings of the IRE 44, 482-493 (1956).
  5. J. Matisoo, "Subnanosecond pair-tunneling to single- particle tunneling transitions in josephson junctions," Applied Physics Letters 9, 167-168 (1966).
  6. K. K. Likharev and V. K. Semenov, "Rsfq logic/memory family: A new josephson-junction technology for sub- terahertz-clock-frequency digital systems," IEEE Trans- actions on Applied Superconductivity 1, 3-28 (1991).
  7. G. De Simoni, F. Paolucci, P. Solinas, E. Strambini, and F. Giazotto, "Metallic supercurrent field-effect transis- tor," Nature nanotechnology 13, 802-805 (2018).
  8. G. De Simoni, F. Paolucci, C. Puglia, and F. Giazotto, "Josephson field-effect transistors based on all-metallic al/cu/al proximity nanojunctions," ACS nano 13, 7871- 7876 (2019).
  9. F. Paolucci, G. De Simoni, P. Solinas, E. Strambini, C. Puglia, N. Ligato, and F. Giazotto, "Field-effect con- trol of metallic superconducting systems," AVS Quantum Science 1, 016501 (2019).
  10. F. Paolucci, G. De Simoni, P. Solinas, E. Strambini, N. Ligato, P. Virtanen, A. Braggio, and F. Giazotto, "Magnetotransport experiments on fully metallic super- conducting dayem-bridge field-effect transistors," Physi- cal Review Applied 11, 024061 (2019).
  11. F. Paolucci, F. Vischi, G. De Simoni, C. Guarcello, P. Solinas, and F. Giazotto, "Field-effect controllable metallic josephson interferometer," Nano Letters 19, 6263-6269 (2019).
  12. G. De Simoni, C. Puglia, and F. Giazotto, "Nio- bium dayem nano-bridge josephson gate-controlled tran- sistors," Applied Physics Letters 116, 242601 (2020).
  13. M. Rocci, G. De Simoni, C. Puglia, D. D. Esposti, E. Strambini, V. Zannier, L. Sorba, and F. Giazotto, "Gate-controlled suspended titanium nanobridge super- current transistor," ACS nano 14, 12621-12628 (2020).
  14. C. Puglia, G. De Simoni, and F. Giazotto, "Electrostatic control of phase slips in ti josephson nanotransistors," Physical Review Applied 13, 054026 (2020).
  15. C. Puglia, G. De Simoni, N. Ligato, and F. Giazotto, "Vanadium gate-controlled josephson half-wave nanorec- tifier," Applied Physics Letters 116, 252601 (2020).
  16. L. Bours, M. T. Mercaldo, M. Cuoco, E. Strambini, and F. Giazotto, "Unveiling mechanisms of electric field ef- fects on superconductors by a magnetic field response," Physical Review Research 2, 033353 (2020).
  17. C. Puglia, G. De Simoni, and F. Giazotto, "Gate control of superconductivity in mesoscopic all-metallic devices," Materials 14, 1243 (2021).
  18. G. De Simoni, S. Battisti, N. Ligato, M. T. Mercaldo, M. Cuoco, and F. Giazotto, "Gate control of the current- flux relation of a josephson quantum interferometer based on proximitized metallic nanojuntions," ACS Applied Electronic Materials 3, 3927-3935 (2021).
  19. C. PUGLIA, G. De Simoni, and F. Giazotto, "Phase slips dynamics in gated ti and v all-metallic supercurrent nano-transistors," Journal of Physics D: Applied Physics (2021).
  20. P. Orús, V. M. Fomin, J. M. De Teresa, and R. Córdoba, "Critical current modulation induced by an electric field in superconducting tungsten-carbon nanowires," Scien- tific Reports 11, 1-9 (2021).
  21. F. Paolucci, F. Crisá, G. De Simoni, L. Bours, C. Puglia, E. Strambini, S. Roddaro, and F. Giazotto, "Electro- static field-driven supercurrent suppression in ionic-gated metallic superconducting nanotransistors," Nano letters 21, 10309-10314 (2021).
  22. J. Basset, O. Stanisavljević, M. Kuzmanović, J. Gabelli, C. Quay, J. Estève, and M. Aprili, "Gate-assisted phase fluctuations in all-metallic josephson junctions," Physical Review Research 3, 043169 (2021).
  23. T. Elalaily, O. Kürtössy, Z. Scherübl, M. Berke, G. Fülöp, I. E. Lukács, T. Kanne, J. Nygård, K. Watanabe, T. Taniguchi, P. Makk, and S. Csonka, "Gate-controlled supercurrent in epitaxial al/inas nanowires," Nano letters 21, 9684-9690 (2021).
  24. L. D. Alegria, C. G. Bøttcher, A. K. Saydjari, A. T. Pierce, S. H. Lee, S. P. Harvey, U. Vool, and A. Yacoby, "High-energy quasiparticle injection into mesoscopic su- perconductors," Nature Nanotechnology , 1-5 (2021).
  25. M. Ritter, A. Fuhrer, D. Haxell, S. Hart, P. Gumann, H. Riel, and F. Nichele, "A superconducting switch actu- ated by injection of high-energy electrons," Nature com- munications 12, 1-6 (2021).
  26. I. Golokolenov, A. Guthrie, S. Kafanov, Y. A. Pashkin, and V. Tsepelin, "On the origin of the controversial elec- trostatic field effect in superconductors," Nature Com- munications 12, 1-7 (2021).
  27. G. Catto, W. Liu, S. Kundu, V. Lahtinen, V. Vesterinen, and M. Möttönen, "Microwave response of a metallic su- perconductor subject to a high-voltage gate electrode," arXiv preprint arXiv:2105.08322 (2021).
  28. M. Ritter, N. Crescini, D. Haxell, M. Hinderling, H. Riel, C. Bruder, A. Fuhrer, and F. Nichele, "Out-of- equilibrium phonons in gated superconducting switches," Nature Electronics 5, 71-77 (2022).
  29. M. T. Mercaldo, P. Solinas, F. Giazotto, and M. Cuoco, "Electrically tunable superconductivity through sur- face orbital polarization," Physical Review Applied 14, 034041 (2020).
  30. M. T. Mercaldo, F. Giazotto, and M. Cuoco, "Spec- troscopic signatures of gate-controlled superconducting phases," Physical Review Research 3, 043042 (2021).
  31. P. Solinas, A. Amoretti, and F. Giazotto, "Sauter- schwinger effect in a bardeen-cooper-schrieffer supercon- ductor," Physical Review Letters 126, 117001 (2021).
  32. L. Chirolli, T. Cea, and F. Giazotto, "Impact of electro- static fields in layered crystalline bcs superconductors," Physical Review Research 3, 023135 (2021).
  33. A. Amoretti, D. K. Brattan, N. Magnoli, L. Martinoia, I. Matthaiakakis, and P. Solinas, "Destroying super- conductivity in thin films with an electric field," arXiv preprint arXiv:2202.00687 (2022).
  34. D. J. Carrad, M. Bjergfelt, T. Kanne, M. Aagesen, F. Krizek, E. M. Fiordaliso, E. Johnson, J. Nygård, and T. S. Jespersen, "Shadow epitaxy for in situ growth of generic semiconductor/superconductor hybrids," Ad- vanced Materials 32, 1908411 (2020).
  35. Y. Niimi and Y. Otani, "Reciprocal spin hall effects in conductors with strong spin-orbit coupling: a review," Reports on progress in physics 78, 124501 (2015).
  36. S. Vélez, V. N. Golovach, A. Bedoya-Pinto, M. Isasa, E. Sagasta, M. Abadia, C. Rogero, L. E. Hueso, F. S. Bergeret, and F. Casanova, "Hanle magnetoresistance in thin metal films with strong spin-orbit coupling," Physi- cal review letters 116, 016603 (2016).
  37. H. Courtois, M. Meschke, J. Peltonen, and J. P. Pekola, "Origin of hysteresis in a proximity josephson junction," Physical review letters 101, 067002 (2008).
  38. M. Bjergfelt, In-situ patterned superconduc- tor/semiconductor nanowires for quantum devices, Ph.D. thesis, FACULTY OF SCIENCE PhD thesis Martin Bjergfelt In-situ patterned . . . (2019).
  39. Fischetti, M. V, DiMaria, D. J, Brorson, SD, Theis, TN, Kirtley, and JR, "Theory of high-field electron transport in silicon dioxide," Physical Review B 31, 8124 (1985).
  40. S. Brorson, D. J. DiMaria, M. V. Fischetti, F. Pesavento, P. Solomon, and D. Dong, "Direct measurement of the energy distribution of hot electrons in silicon dioxide," Journal of applied physics 58, 1302-1313 (1985).
  41. M. V. Fischetti, D. J. DiMaria, L. Dori, J. Batey, E. Tier- ney, and J. Stasiak, "Ballistic electron transport in thin silicon dioxide films," Physical Review B 35, 4404 (1987).
  42. D. DiMaria and M. Fischetti, "Vacuum emission of hot electrons from silicon dioxide at low temperatures," Jour- nal of applied physics 64, 4683-4691 (1988).
  43. M. Ejrnaes, D. Salvoni, L. Parlato, D. Massarotti, R. Caruso, F. Tafuri, X. Yang, L. You, Z. Wang, G. Pepe, et al., "Superconductor to resistive state switching by multiple fluctuation events in nbtin nanostrips," Scien- tific reports 9, 1-6 (2019).
  44. D. McCumber and B. Halperin, "Time scale of intrin- sic resistive fluctuations in thin superconducting wires," Physical Review B 1, 1054 (1970).
  45. A. Bezryadin, Superconductivity in Nanowires: Fabrica- tion and Quantum Transport (John Wiley & Sons, 2013).
  46. J. Kurkijärvi, "Intrinsic fluctuations in a superconduct- ing ring closed with a josephson junction," Physical Re- view B 6, 832 (1972).
  47. T. Fulton and L. Dunkleberger, "Lifetime of the zero- voltage state in josephson tunnel junctions," Physical Re- view B 9, 4760 (1974).
  48. N. Shah, D. Pekker, and P. M. Goldbart, "Inherent stochasticity of superconductor-resistor switching behav- ior in nanowires," Physical review letters 101, 207001 (2008).
  49. D. Pekker, N. Shah, M. Sahu, A. Bezryadin, and P. M. Goldbart, "Stochastic dynamics of phase-slip trains and superconductive-resistive switching in current-biased nanowires," Physical Review B 80, 214525 (2009).
  50. SFig. 8. a I -V curve as a function of ± V sg of a Ta/InAs nanowire device fabricated on a sappire substrate. b The corresponding I leak as a function of ± V sg .