Draft Genome Sequences of Four Virulent Aeromonas hydrophila Strains from Catfish Aquaculture (original) (raw)

An Asian origin of virulent Aeromonas hydrophila responsible for disease epidemics in United States-farmed catfish

mBio, 2014

Since 2009, catfish farming in the southeastern United States has been severely impacted by a highly virulent and clonal population of Aeromonas hydrophila causing motile Aeromonas septicemia (MAS) in catfish. The possible origin of this newly emerged highly virulent A. hydrophila strain is unknown. In this study, we show using whole-genome sequencing and comparative genomics that A. hydrophila isolates from diseased grass carp in China and catfish in the United States have highly similar genomes. Our phylogenomic analyses suggest that U.S. catfish isolates emerged from A. hydrophila populations of Asian origin. Furthermore, we identified an A. hydrophila strain isolated in 2004 from a diseased catfish in Mississippi, prior to the onset of the major epidemic outbreaks in Alabama starting in 2009, with genomic characteristics that are intermediate between those of the Asian and Alabama fish isolates. Investigation of A. hydrophila strain virulence demonstrated that the isolate from t...

Comparative biochemistry and genomics of Aeromonas hydrophila isolates from an epidemic in channel catfish

Aeromonas hydrophila was identified as the etiologic agent infecting farmed channel catfish in Alabama during 2009 to 2011, with cases in Arkansas and Mississippi reported beginning in 2010. In 2009 alone this epizootic resulted in significant mortality on 42 farms in AL with the loss of over 3 million pounds of catfish. While motile Aeromonas septicemia (MAS) is common in channel catfish during warm water conditions, this outbreak had unusually high mortalities and afflicted mature fish. A. hydrophila isolates were isolated from moribund catfish, aquaculture pond and sediment samples in 2009 and 2010, and were compared to other A. hydrophila isolates on the basis of their biochemistry, molecular phylogeny, and with a comparative genomic analysis for representative strains. Biochemical tests on epidemic strains were similar to other A. hydrophila strains, with the exception of a weakly positive result for inositol fermentation among epidemic strains. Recent isolates had 100% identit...

Genome sequence of Aeromonas hydrophila AH-3 (serotype O34)

2016

Aeromonas hydrophila is an emerging pathogen of poikilothermic animals, from fish to mammals, including humans. Here, we report the whole-genome sequence of the A. hydrophila AH-3 strain, isolated from a fish farm goldfish septicemia outbreak in Spain, with a characterized polar and lateral flagellum glycosylation pattern.

Whole spectrum of Aeromonas hydrophila virulence determinants and the identification of novel SNPs using comparative pathogenomics

Scientific Reports

Aeromonas hydrophila is a ubiquitous fish pathogen and an opportunistic human pathogen. It is mostly found in aquatic habitats, but it has also been isolated from food and bottled mineral waters. It causes hemorrhagic septicemia, ulcerative disease, and motile Aeromonas septicemia (MAS) in fish and other aquatic animals. Moreover, it might cause gastroenteritis, wound infections, and septicemia in humans. Different variables influence A. hydrophila virulence, including the virulence genes expressed, host susceptibility, and environmental stresses. The identification of virulence factors for a bacterial pathogen will help in the development of preventive and control measures. 95 Aeromonas spp. genomes were examined in the current study, and 53 strains were determined to be valid A. hydrophila. These genomes were examined for pan- and core-genomes using a comparative genomics technique. A. hydrophila has an open pan-genome with 18,306 total genes and 1620 genes in its core-genome. In ...

Genome sequence of Aeromonas hydrophila ATCC 7966T: jack of all trades

Journal of bacteriology, 2006

The complete genome of Aeromonas hydrophila ATCC 7966 T was sequenced. Aeromonas, a ubiquitous waterborne bacterium, has been placed by the Environmental Protection Agency on the Contaminant Candidate List because of its potential to cause human disease. The 4.7-Mb genome of this emerging pathogen shows a physiologically adroit organism with broad metabolic capabilities and considerable virulence potential. A large array of virulence genes, including some identified in clinical isolates of Aeromonas spp. or Vibrio spp., may confer upon this organism the ability to infect a wide range of hosts. However, two recognized virulence markers, a type III secretion system and a lateral flagellum, that are reported in other A. hydrophila strains are not identified in the sequenced isolate, ATCC 7966 T . Given the ubiquity and free-living lifestyle of this organism, there is relatively little evidence of fluidity in terms of mobile elements in the genome of this particular strain. Notable aspects of the metabolic repertoire of A. hydrophila include dissimilatory sulfate reduction and resistance mechanisms (such as thiopurine reductase, arsenate reductase, and phosphonate degradation enzymes) against toxic compounds encountered in polluted waters. These enzymes may have bioremediative as well as industrial potential. Thus, the A. hydrophila genome sequence provides valuable insights into its ability to flourish in both aquatic and host environments. , et al. 1997. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390: 580-586. 29. Galindo, C. L., J. Sha, A. A. Fadl, L. Pillai, and A. K. Chopra. 2006. Host immune responses to Aeromonas virulence factors. Curr. Immunol. Rev. 2:13-26. 30. Galperin, M. Y. 2005. A census of membrane-bound and intracellular signal transduction proteins in bacteria: bacterial IQ, extroverts and introverts. BMC Microbiol. 5:35. 31. Gavin, R., A. A. Rabaan, S. Merino, J. M. Tomas, I. Gryllos, and J. G. Shaw. 2002. Lateral flagella of Aeromonas species are essential for epithelial cell adherence and biofilm formation. . Symbiosis of Aeromonas veronii biovar sobria and Hirudo medicinalis, the medicinal leech: a novel model for digestive tract associations. Infect. Immun. 67:1-7. 36. Gray, S. J. 1984. Aeromonas hydrophila in livestock: incidence, biochemical characteristics and antibiotic susceptibility. J. Hyg. 92:365-375. 37. Gryllos, I., J. G. Shaw, R. Gavin, S. Merino, and J. M. Tomas. 2001. Role of flm locus in mesophilic Aeromonas species adherence. Infect. Immun. 69:65-74. 38. Guindon, S., and O. Gascuel. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52:696-704. 39. Haft, D. H., J. D. Selengut, L. M. Brinkac, N. Zafar, and O. White. 2005. Genome Properties: a system for the investigation of prokaryotic genetic content for microbiology, genome annotation and comparative genomics. Bioinformatics 21:293-306. 40. Hiransuthikul, N., W. Tantisiriwat, K. Lertutsahakul, A. Vibhagool, and P. Boonma. 2005. Skin and soft-tissue infections among tsunami survivors in southern Thailand. Clin. Infect. Dis. 41:e93-e96. 41. Hirono, I., and T. Aoki. 1991. Nucleotide sequence and expression of an extracellular hemolysin gene of Aeromonas hydrophila. Microb. Pathog. 11:189-197. 42. Howard, S. P., and J. T. Buckley. 1986. Molecular cloning and expression in Escherichia coli of the structural gene for the hemolytic toxin aerolysin from Aeromonas hydrophila. Mol. Gen. Genet. 204:289-295. 43. Howard, S. P., W. J. Garland, M. J. Green, and J. T. Buckley. 1987. Nucleotide sequence of the gene for the hole-forming toxin aerolysin of Aeromonas hydrophila. J. Bacteriol. 169:2869-2871. 44. Huang, C. J., and E. L. Barrett. 1991. Sequence analysis and expression of the Salmonella typhimurium asr operon encoding production of hydrogen sulfide from sulfite. J. Bacteriol. 173:1544-1553. 45. Hunter, W. J., and L. D. Kuykendall. 2006. Identification and characterization of an Aeromonas salmonicida (syn Haemophilus piscium) strain that reduces selenite to elemental red selenium. Curr. Microbiol. 52:305-309. 46. Ikemura, T. 1982. Correlation between the abundance of yeast transfer RNAs and the occurrence of the respective codons in protein genes. Differences in synonymous codon choice patterns of yeast and Escherichia coli with reference to the abundance of isoaccepting transfer RNAs. J. Mol. Biol. 158:573-597. 47. Ilori, M. O., C. J. Amobi, and A. C. Odocha. 2005. Factors affecting biosurfactant production by oil degrading Aeromonas spp. isolated from a tropical environment. Chemosphere 61:985-992. 48. Janda, J. M., and S. L. Abbott. 1998. Evolving concepts regarding the genus Aeromonas: an expanding panorama of species, disease presentations, and unanswered questions. Clin. Infect. Dis. 27:332-344. 49. Janda, J. M., and R. P. Kokka. 1991. The pathogenicity of Aeromonas strains relative to genospecies and phenospecies identification. FEMS Microbiol. Lett. 69:29-33. 50. Jansen, R., J. D. Embden, W. Gaastra, and L. M. Schouls. 2002. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol. 43:1565-1575. 51. Jiang, B., and S. P. Howard. 1992. The Aeromonas hydrophila exeE gene, required both for protein secretion and normal outer membrane biogenesis, is a member of a general secretion pathway.

Draft genome sequence of the Chilean isolate Aeromonas salmonicida strain CBA100

FEMS microbiology letters, 2015

We report the draft genome sequence from Aeromonas salmonicida sp. strain CBA100, which was characterized as an antibiotic-resistant bacterium isolated from infected rainbow trout. The total size of the genome is 4 788 109 bp, with a G + C content of 60.55%. Comparison of its open reading frames shows that the closest homologue to one third of the genes of strain CBA100 are found in A. hydrophila. The strain contains several efflux pumps and putative genes that confer resistance to multiclass antibiotics, including macrolide, β-lactamics, florfenicol and quinolones. The antibiogram profile suggests that efflux pumps are the main mechanism of resistance to non-β-lactamic antibiotics. This is the first genome of a Chilean isolate of A. salmonicida, which should shed light on the design of strain-specific vaccines against this pathogen and reduce the use of antibiotics for preventive treatment in Chilean aquaculture.

Classification of a Hypervirulent Aeromonas hydrophila Pathotype Responsible for Epidemic Outbreaks in Warm-Water Fishes

Frontiers in microbiology, 2016

Lineages of hypervirulent Aeromonas hydrophila (vAh) are the cause of persistent outbreaks of motile Aeromonas septicemia in warm-water fishes worldwide. Over the last decade, this virulent lineage of A. hydrophila has resulted in annual losses of millions of tons of farmed carp and catfish in the People's Republic of China and the United States (US). Multiple lines of evidence indicate US catfish and Asian carp isolates of A. hydrophila affiliated with sequence type 251 (ST251) share a recent common ancestor. To address the genomic context for the putative intercontinental transfer and subsequent geographic spread of this pathogen, we conducted a core genome phylogenetic analysis on 61 Aeromonas spp. genomes, of which 40 were affiliated with A. hydrophila, with 26 identified as epidemic strains. Phylogenetic analyses indicate all ST251 strains form a coherent lineage affiliated with A. hydrophila. Within this lineage, conserved genetic loci unique to A. hydrophila were identifi...

Whole-Genome Sequence of Aeromonas hydrophila CVM861 Isolated from Diarrhetic Neonatal Swine

Microorganisms

Aeromonas hydrophila are ubiquitous in the environment and are highly distributed in aquatic habitats. They have long been known as fish pathogens but are opportunistic human pathogens. Aeromonas spp. have persisted through food-processing safeguards and have been isolated from fresh grocery vegetables, dairy, beef, pork, poultry products and packaged ready-to-eat meats, thus providing an avenue to foodborne illness. A beta-hemolytic, putative Escherichia coli strain collected from diarrheic neonatal pigs in Oklahoma was subsequently identified as A. hydrophila, and designated CVM861. Here we report the whole-genome sequence of A. hydrophila CVM861, SRA accession number, SRR12574563; BioSample number, SAMN1590692; Genbank accession number SRX9061579. The sequence data for CVM861 revealed four Aeromonas-specific virulence genes: lipase (lip), hemolysin (hlyA), cytonic enterotoxin (ast) and phospholipid-cholesterolacyltransferase (GCAT). There were no alignments to any virulence genes...

Comparative genomics of Aeromonas veronii: Identification of a pathotype impacting aquaculture globally

PLOS ONE, 2019

Aeromonas veronii is a gram-negative species abundant in aquatic environments that causes disease in humans as well as terrestrial and aquatic animals. In the current study, 41 publicly available A. veronii genomes were compared to investigate distribution of putative virulence genes, global dissemination of pathotypes, and potential mechanisms of virulence. The complete genome of A. veronii strain ML09-123 from an outbreak of motile aeromonas septicemia in farm-raised catfish in the southeastern United States was included. Dissemination of A. veronii strain types was discovered in dispersed geographical locations. Isolate ML09-123 is highly similar to Chinese isolate TH0426, suggesting the two strains have a common origin and may represent a pathotype impacting aquaculture in both countries. Virulence of strain ML09-123 in catfish in a dose-dependent manner was confirmed experimentally. Subsystem category disposition showed the majority of genomes exhibit similar distribution of genomic elements. The type I secretion system (T1SS), type II secretion system (T2SS), type 4 pilus (T4P), and flagellum core elements are conserved in all A. veronii genomes, whereas the type III secretion system (T3SS), type V secretion system (T5SS), type VI secretion system (T6SS), and tight adherence (TAD) system demonstrate variable dispersal. Distribution of mobile elements is dependent on host and geographic origin, suggesting this species has undergone considerable genetic exchange. The data presented here lends insight into the genomic variation of A. veronii and identifies a pathotype impacting aquaculture globally.