glial cells missing and gcm2 Cell Autonomously Regulate Both Glial and Neuronal Development in the Visual System of Drosophila (original) (raw)

Subtypes of glial cells in the Drosophila embryonic ventral nerve cord as related to lineage and gene expression

Mechanisms of Development, 2008

Cell lineage Longitudinal glia Castor Drosophila A B S T R A C T In the Drosophila embryonic CNS several subtypes of glial cells develop, which arrange themselves at characteristic positions and presumably fulfil specific functions. The mechanisms leading to the specification and differentiation of glial subtypes are largely unknown. By DiI labelling in glia-specific Gal4 lines we have clarified the lineages of the lateral glia in the embryonic ventral nerve cord and linked each glial cell to a specific stem cell. For the lineage of the longitudinal glioblast we show that it consists of 9 cells, which acquire at least four different identities. A large collection of molecular markers (many of them representing transcription factors and potential Gcm target genes) reveals that individual glial cells express specific combinations of markers. However, cluster analysis uncovers similar combinatorial codes for cells within, and significant differences between the categories of surface-associated, cortex-associated, and longitudinal glia. Glial cells derived from the same stem cell may be homogeneous (though not identical; stem cells NB1-1, NB5-6, NB6-4, LGB) or heterogeneous (NB7-4, NB1-3) with regard to gene expression. In addition to providing a powerful tool to analyse the fate of individual glial cells in different genetic backgrounds, each of these marker genes represents a candidate factor involved in glial specification or differentiation. We demonstrate this by the analysis of a castor loss of function mutation, which affects the number and migration of specific glial cells. (G.M. Technau). M E C H A N I S M S O F D E V E L O P M E N T 1 2 5 ( 2 0 0 8 ) 5 4 2 -5 5 7 a v a i l a b l e a t w w w . s c i e n c e d i r e c t . c o m j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / m o d o

Predetermined embryonic glial cells form the distinct glial sheaths of the Drosophila peripheral nervous system

Development, 2013

One of the numerous functions of glial cells in Drosophila is the ensheathment of neurons to isolate them from the potassium-rich haemolymph, thereby establishing the blood-brain barrier. Peripheral nerves of flies are surrounded by three distinct glial cell types. Although all embryonic peripheral glia (ePG) have been identified on a single-cell level, their contribution to the three glial sheaths is not known. We used the Flybow system to label and identify each individual ePG in the living embryo and followed them into third instar larva. We demonstrate that all ePG persist until the end of larval development and some even to adulthood. We uncover the origin of all three glial sheaths and describe the larval differentiation of each peripheral glial cell in detail. Interestingly, just one ePG (ePG2) exhibits mitotic activity during larval stages, giving rise to up to 30 glial cells along a single peripheral nerve tract forming the outermost perineurial layer. The unique mitotic ability of ePG2 and the layer affiliation of additional cells were confirmed by in vivo ablation experiments and layer-specific block of cell cycle progression. The number of cells generated by this glial progenitor and hence the control of perineurial hyperplasia correlate with the length of the abdominal nerves. By contrast, the wrapping and subperineurial glia layers show enormous hypertrophy in response to larval growth. This characterisation of the embryonic origin and development of each glial sheath will facilitate functional studies, as they can now be addressed distinctively and genetically manipulated in the embryo.

Development and function of embryonic central nervous system glial cells inDrosophila

Developmental Genetics, 1996

Each abdominal neuromere of a Drosophila embryo contains about 60 glial cells [Klambt C, Goodman CS (1991): Glia 4:205-213; Ito ef a/. (1995): Roux's Arch Dev Biol, 204:284-3071. Among these, the midline and longitudinal glia are described to some detail. The midline glia are located dorsally in the nerve cord ensheathing the two segmental cornmissures. They are required for the proper establishment of commissures. The longitudinal glia, the A and B glia, and the segment boundary cells (SBC) are covering the longitudinal connectives. The longitudinal glia prefigure longitudinal axon paths and appear capable of regulating the expression of neuronal antigens. In the following we summarize the knowledge on the function of these glial cells.

Segregation of postembryonic neuronal and glial lineages inferred from a mosaic analysis of the Drosophila larval brain

Mechanisms of Development, 2007

Due to its intermediate complexity and its sophisticated genetic tools, the larval brain of Drosophila is a useful experimental system to study the mechanisms that control the generation of cell diversity in the CNS. In order to gain insight into the neuronal and glial lineage specificity of neural progenitor cells during postembryonic brain development, we have carried an extensive mosaic analysis throughout larval brain development. In contrast to embryonic CNS development, we have found that most postembryonic neurons and glial cells of the optic lobe and central brain originate from segregated progenitors. Our analysis also provides relevant information about the origin and proliferation patterns of several postembryonic lineages such as the superficial glia and the medial-anterior Medulla neuropile glia. Additionally, we have studied the spatio-temporal relationship between gcm expression and gliogenesis. We found that gcm expression is restricted to the post-mitotic cells of a few neuronal and glial lineages and it is mostly absent from postembryonic progenitors. Thus, in contrast to its major gliogenic role in the embryo, the function of gcm during postembryonic brain development seems to have evolved to the specification and differentiation of certain neuronal and glial lineages.

Glial cells missing: A binary switch between neuronal and glial determination in drosophila

Cell, 1995

In the Drosophila CNS, both neurons and glia are derived from neuroblasts. We have identified a gene, glial cells missing (gcm), that encodes a novel nuclear protein expressed transiently in early glial cells. Its mutation causes presumptive glial cells to differentiate into neurons, whereas its ectopic expression forces virtually all CNS cells to become glial cells. Thus, gcm functions as a binary switch that turns on glial fate while inhibiting default neuronal fate of the neuroblasts and their progeny. Similar results are also obtained in the PNS. Analyses of the mutant revealed that "pioneer neurons" can find correct pathways without glial cells and that neurons and glia have a common molecular basis for individual identity.

Glial cell development in Drosophila

International Journal of Developmental Neuroscience, 2001

In the Drosophila central nervous system (CNS) about 10% of the cells are of glial nature. A set of molecular markers has allowed unraveling a number of genes controlling glial cell fate determination as well as genes required for glial cell differentiation.