Cutting Edge: Differential Roles for Phosphoinositide 3-Kinases, p110γ and p110δ, in Lymphocyte Chemotaxis and Homing (original) (raw)
Related papers
T-lymphocyte navigation and migration: beyond the PI3K paradigm
Biochemical Society Transactions, 2007
The co-ordinated and directional trafficking of T-lymphocytes in lymphoid and peripheral tissues is an important process in lymphoid development, immunosurveillance and immune responses. Members of the chemokine superfamily play a key role in providing navigational cues for T-cells and chemokine receptors couple with a wide range of biochemical signals including phosphoinositide lipid metabolism, elevation of intracellular calcium levels, activation of a wide array of protein kinases as well as small GTPases. One of the most robust biochemical signals elicited by chemokines in T-lymphocytes is the activation of several members of the PI3K (phosphoinositide 3-kinase) family. In many cell systems, PI3Ks are known to contribute to several aspects of the migratory machinery, although their role in T-cell migration has been unclear and will be considered in the present paper.
European Journal of Immunology, 2006
B lymphocyte chemokine receptors signal to downstream effectors by activating heterotrimeric G proteins. However, many of these effectors remain unknown and the known ones often have ill-defined roles in B cell trafficking. Here we report that pharmacological inhibitors of phosphoinositide 3-kinases (wortmannin, WMN), Bruton's tyrosine kinase (LFM-A13), and Jun kinases (SP600125) all significantly impair CXCL12-induced mouse B cell chemotaxis and that of a human B lymphoma cell line. Examination of two CXCR4-induced signaling pathways revealed that LFM-A13 and WMN blocked Akt activation, while SP600125 and WMN blocked JNK activation. Each of the inhibitors impaired the homing of transferred B cells to peripheral lymph nodes. Intravital imaging of control and inhibitor-treated mouse B cells in the inguinal lymph node high endothelial venules (HEV) demonstrated a 17%, 35%, and 60% reduction in the number of firmly adherent B cells with LFM-A13, SP600125, and WMN, respectively. These results implicate chemokine receptor mediated activation of phosphoinositide 3-kinases in the firm adhesion of mouse B cells within peripheral lymph node HEV, while Bruton's tyrosine kinase and JNK activation are less important and more likely needed during B cell transmigration through the endothelium and/or trafficking into the lymph node parenchyma.
Lymphocyte cell motility: the twisting, turning tale of phosphoinositide 3-kinase
Biochemical Society Transactions, 2007
The PI3K (phosphoinositide 3-kinase) family of lipid kinases regulate cell motility in diverse organisms and cell types. In mammals, the main PI3K enzyme activated by chemokine receptor signalling is the class IB isoform, p110γ. Studies of p110γ-knockout mice have shown an essential function for this isoform in chemotaxis of neutrophils and macrophages both in vitro and in vivo. However, the roles of p110γ and other PI3K enzymes and regulatory subunits in lymphocyte motility have been more difficult to discern. Recent studies of adoptively transferred, fluorescently labelled lymphocytes have revealed complex and unexpected functions for PI3K in lymphocyte migration in vivo. In this review we highlight cell-type-specific roles for PI3K catalytic and regulatory subunits in the homing and basal motility of lymphocytes in the intact lymph node.
The essential role of chemokines in the selective regulation of lymphocyte homing
Cytokine & Growth Factor Reviews, 2007
Knowledge of lymphocyte migration has become a major issue in our understanding of acquired immunity. The selective migration of naïve, effector, memory and regulatory T-cells is a multiple step process regulated by a specific arrangement of cytokines, chemokines and adhesion receptors that guide these cells to specific locations. Recent research has outlined two major pathways of lymphocyte trafficking under homeostatic and inflammatory conditions, one concerning tropism to cutaneous tissue and a second one related to mucosal-associated sites. In this article we will outline our present understanding of the role of cytokines and chemokines as regulators of lymphocyte migration through tissues. #
Activation-dependent modulation of B lymphocyte migration to chemokines
International Immunology, 2000
In this study we have examined the migration responses of human peripheral blood or tonsillar B lymphocytes to a selection of 27 chemokines. Freshly isolated (CD19 ⍣ ) B lymphocytes show greatly impaired in vitro chemotaxis which is overcome by overnight culture. The best responses of cultured B lymphocytes were observed with BCA-1, SLC, ELC and SDF-1, reaching 19-26% of total input cells that have migrated, followed by LARC and TECK with 5-10% of migrated cells, whereas no other chemokine was found to be active. Stimulation of B lymphocytes with lipopolysaccharide or anti-CD40 plus IL-4 resulted in marked enhancement of the migration response to BCA-1, SLC, ELC and SDF-1, reaching 30-60% migrated cells at 12 or 36 h of culture respectively. The activation-dependent increase in the migration efficacy was transient and declined to base level responses after 72 h of culture. Under no circumstances did we detect B lymphocyte chemotaxis to inflammatory chemokines. Also, mobilization of intracellular calcium ([Ca 2⍣ ] i ), an otherwise typical response of leukocytes to chemokines, was not observed. The transient increase in B lymphocyte migration did not correlate with changes in chemokine receptor expression, as evidenced by cell surface staining with antibodies to CXCR4, CXCR5 and CCR6, and by receptor transcript analyses. BCA-1, SLC, ELC and SDF-1 are typical 'housekeeping' chemokines with prominent expression at discrete locations in lymphoid tissues. Modulation of migration to these chemokines may be a critical mechanism for the proper positioning of B lymphocytes during humoral responses in secondary lymphoid tissues.
Immunity, 2007
Control of integrin-mediated adhesion and migration by chemokines plays a critical role in B cell development, differentiation, and function; however, the underlying signaling mechanisms are poorly defined. Here we show that the chemokine SDF-1 induced activation of Bruton's tyrosine kinase (Btk) and that integrin-mediated adhesion and migration in response to SDF-1 or CXCL13, as well as in vivo homing to lymphoid organs, was impaired in Btk-deficient (pre-)B cells. Furthermore, SDF-1 induced tyrosine phosphorylation of Phospholipase Cg2 (PLCg2), which, unlike activation of the migration regulatory GTPases Rac or Rap1, was mediated by Btk. PLCg2-deficient B cells also exhibited impaired SDF-1-controlled migration. These results reveal that Btk and PLCg2 mediate chemokine-controlled migration, thereby providing insights into the control of B cell homeostasis, trafficking, and function, as well as into the pathogenesis of the immunodeficiency disease X-linked agammaglobulinemia (XLA).
Class IA Phosphoinositide 3-Kinase Modulates Basal Lymphocyte Motility in the Lymph Node
The Journal of Immunology, 2007
Recruitment of PI3K to the cell membrane is an indispensable step in normal lymphocyte proliferation and activation. In this study we identify PI3K as an important signaling molecule for maintaining basal T and B lymphocyte motility and homing in the intact lymph node. Pharmacological inhibition of PI3K catalytic isoforms exerted broad effects on basal lymphocyte motility, including changes in homing kinetics, localization of B cells within the lymph node, and reduced cell velocities. Lymphocytes deficient in either or both of the class IA PI3K regulatory subunits p85␣ and p85 also exhibited reduced velocities, with the magnitude of reduction depending upon both cell type and isoform specificity. B cells deficient in p85␣ exhibited gross morphological abnormalities that were not evident in cells treated with a PI3K inhibitor. Our results show, for the first time, that class IA PI3Ks play an important role in regulating basal lymphocyte motility and that p85␣ regulatory subunit expression is required to maintain B cell morphology in a manner independent of PI3K catalytic function. Moreover, we demonstrate distinct roles for catalytic domain function and class IA PI3K regulatory domain activity in lymphocyte motility, homing, and homeostatic localization of mature resting B cells.
Negative regulation of chemokine receptor signaling and B-cell chemotaxis by p66Shc
Cell Death & Disease
Shc (Src homology 2 domain containing) adaptors are ubiquitous components of the signaling pathways triggered by tyrosine kinase-coupled receptors. In lymphocytes, similar to other cell types, the p52 and p66 isoforms of ShcA/Shc participate in a self-limiting loop where p52Shc acts as a positive regulator of antigen receptor signaling by promoting Ras activation, whereas p66Shc limits this activity by competitively inhibiting p52Shc. Based on the fact that many signaling mediators are shared by antigen and chemokine receptors, including p52Shc, we have assessed the potential implication of p66Shc in the regulation of B-cell responses to chemokines, focusing on the homing receptors CXCR4 (C-X-C chemokine receptor type 4) and CXCR5 (C-X-C chemokine receptor type 5). The results identify p66Shc as a negative regulator of the chemotactic responses triggered by these receptors, including adhesion, polarization and migration. We also provide evidence that this function is dependent on th...
Frontiers in Immunology
Naive B cells use the chemokine receptor CXCR5 to enter B cell follicles, where they scan CXCL13-expressing ICAM-1+ VCAM-1+ follicular dendritic cells (FDCs) for the presence of antigen. CXCL13-CXCR5-mediated motility is mainly driven by the Rac guanine exchange factor DOCK2, which contains a binding domain for phosphoinositide-3,4,5-triphosphate (PIP3) and other phospholipids. While p110δ, the catalytic subunit of the class IA phosphoinositide-3-kinase (PI3K) δ, contributes to CXCR5-mediated B cell migration, the precise interdependency of DOCK2, p110δ, or other PI3K family members during this process remains incompletely understood. Here, we combined in vitro chemotaxis assays and in vivo imaging to examine the contribution of these two factors during murine naïve B cell migration to CXCL13. Our data confirm that p110δ is the main catalytic subunit mediating PI3K-dependent migration downstream CXCR5, whereas it does not contribute to chemotaxis triggered by CXCR4 or CCR7, two othe...