Sensorimotor, language, and working memory representation within the human cerebellum (original) (raw)

Functional topography of the cerebellum for motor and cognitive tasks: An fMRI study

NeuroImage, 2012

Anatomical, clinical and imaging findings suggest that the cerebellum is engaged in cognitive and affective functions as well as motor control. Evidence from converging modalities also indicates that there is a functional topography in the human cerebellum for overt control of movement vs. higher functions, such that the cerebellum can be divided into zones depending on connectivity with sensorimotor vs. multimodal association cortices. Using functional MRI, we show that regions active during overt movement differ from those involved in higher-level language, spatial processing and working memory tasks. Nine healthy participants each completed five tasks in order to determine the relative activation patterns for the different paradigms. Right-handed finger-tapping activated right cerebellar lobules IV-V and VIII, consistent with descriptions of the cerebellar homunculi. Verb generation engaged right cerebellar lobules VI-Crus I and a second cluster in lobules VIIB-VIIIA. Mental rotation activation peaks were localized to medial left cerebellar lobule VII (Crus II). A 2-back working memory task activated bilateral regions of lobules VI-VII. Viewing arousing vs. neutral images did not reliably activate the cerebellum or cerebral limbic areas in this study. The cerebellar functional topography identified in this study reflects the involvement of different cerebro-cerebellar circuits depending on the demands of the task being performed: overt movement activated sensorimotor cortices along with contralateral cerebellar lobules IV-V and VIII, whereas more cognitively demanding tasks engaged prefrontal and parietal cortices along with cerebellar lobules VI and VII. These findings provide further support for a cerebellar role in both motor and cognitive tasks, and better establish the existence of functional subregions in the cerebellum. Future studies are needed to determine the exact contribution of the cerebellumand different cerebro-cerebellar circuitsto task performance.

A Functional Atlas of the Cerebellum Based on NeuroSynth Task Coordinates

The Cerebellum, 2023

Although the human cerebellum has a surface that is about 80% of that of the cerebral cortex and has about four times as many neurons, its functional organization is still very much uncharted. Despite recent attempts to provide resting-state and task-based parcellations of the cerebellum, these two approaches lead to large discrepancies. This article describes a comprehensive task-based functional parcellation of the human cerebellum based on a large-scale functional database, Neuro-Synth, involving an unprecedented diversity of tasks, which were reliably associated with ontological key terms referring to psychological functions. Involving over 44,500 participants from this database, we present a parcellation that exhibits replicability with earlier resting-state parcellations across cerebellar and neocortical structures. The functional parcellation of the cerebellum confirms the major networks revealed in prior work, including sensorimotor, directed (dorsal) attention, divided (ventral) attention, executive control, mentalizing (default mode) networks, tiny patches of a limbic network, and also a unilateral language network (but not the visual network), and the association of these networks with underlying ontological key terms confirms their major functionality. The networks are revealed at locations that are roughly similar to prior resting-state cerebellar parcellations, although they are less symmetric and more fragmented across the two hemispheres. This functional parcellation of the human cerebellum and associated key terms can provide a useful guide in designing studies to test specific functional hypotheses and provide a reference for interpreting the results.

Universal Transform or Multiple Functionality? Understanding the Contribution of the Human Cerebellum across Task Domains

Neuron, 2019

An impressive body of research over the past 30 years has implicated the human cerebellum in a broad range of functions, including motor control, perception, language, working memory, cognitive control, and social cognition. The relatively uniform anatomy and physiology of the cerebellar cortex has given rise to the idea that this structure performs the same computational function across diverse domains. Here we highlight evidence from the human neuroimaging literature that documents the striking functional heterogeneity of the cerebellum, both in terms of task-evoked activity patterns and, as measured under task-free conditions, functional connectivity with the neocortex. Building on these observations, we discuss the theoretical challenges these results present to the idea of a universal cerebellar computation and consider the alternative concept of multiple functionality, the idea that the same underlying circuit implements functionally distinct computations.

Consensus paper: the cerebellum's role in movement and cognition

Cerebellum (London, England), 2014

While the cerebellum's role in motor function is well recognized, the nature of its concurrent role in cognitive function remains considerably less clear. The current consensus paper gathers diverse views on a variety of important roles played by the cerebellum across a range of cognitive and emotional functions. This paper considers the cerebellum in relation to neurocognitive development, language function, working memory, executive function, and the development of cerebellar internal control models and reflects upon some of the ways in which better understanding the cerebellum's status as a “supervised learning machine” can enrich our ability to understand human function and adaptation. As all contributors agree that the cerebellum plays a role in cognition, there is also an agreement that this conclusion remains highly inferential. Many conclusions about the role of the cerebellum in cognition originate from applying known information about cerebellar contributions to the coordination and quality of movement. These inferences are based on the uniformity of the cerebellum's compositional infrastructure and its apparent modular organization. There is considerable support for this view, based upon observations of patients with pathology within the cerebellum.

Lobular patterns of cerebellar activation in verbal working-memory and finger-tapping tasks as revealed by functional MRI

The Journal of neuroscience : the official journal of the Society for Neuroscience, 1997

The lobular distributions of functional activation of the cerebellum during verbal working-memory and finger movement tasks were investigated using functional magnetic resonance imaging (fMRI). Relative to a rest control, finger tapping of the right hand produced ipsilateral-increased activation in HIV/HV [Roman numeral designations based on Larsell's () nomenclature] and HVI and weaker activation in HVIII that was stronger on the ipsilateral side. For a working-memory task, subjects were asked to remember six (high load) or one (low load) visually presented letters across a brief delay. To assess the motoric aspects of rehearsal in the absence of working memory, we asked the subjects to repeatedly read subvocally six or one letters at a rate that approximated the internally generated rehearsal of working memory (motoric rehearsal task). For both tasks, bilateral regions of the superior cerebellar hemispheres (left superior HVIIA and right HVI) and portions of posterior vermis (...

Cognitive and Motor Loops of the Human Cerebro-cerebellar System

Journal of Cognitive Neuroscience, 2010

■ We applied fMRI and diffusion-weighted MRI to study the segregation of cognitive and motor functions in the human cerebrocerebellar system. Our fMRI results show that a load increase in a nonverbal auditory working memory task is associated with enhanced brain activity in the parietal, dorsal premotor, and lateral prefrontal cortices and in lobules VII-VIII of the posterior cerebellum, whereas a sensory-motor control task activated the motor/somatosensory, medial prefrontal, and posterior cingulate cortices and lobules V/ VI of the anterior cerebellum. The load-dependent activity in the crus I/II had a specific relationship with cognitive performance: This activity correlated negatively with load-dependent increase in RTs. This correlation between brain activity and RTs was not observed in the sensory-motor task in the activated cerebellar regions. Furthermore, probabilistic tractography analysis of the diffusion-weighted MRI data suggests that the tracts between the cerebral and the cerebellar areas exhibiting cognitive loaddependent and sensory-motor activity are mainly projected via separated pontine (feed-forward tracts) and thalamic (feedback tracts) nuclei. The tractography results also indicate that the crus I/II in the posterior cerebellum is linked with the lateral prefrontal areas activated by cognitive load increase, whereas the anterior cerebellar lobe is not. The current results support the view that cognitive and motor functions are segregated in the cerebellum. On the basis of these results and theories of the function of the cerebellum, we suggest that the posterior cerebellar activity during a demanding cognitive task is involved with optimization of the response speed. ■

A hierarchical atlas of the human cerebellum for functional precision mapping

2023

The human cerebellum is activated by a wide variety of cognitive and motor tasks. Previous functional atlases have relied on single task-based or resting-state fMRI datasets. Here, we present a functional atlas that integrates information from 7 large-scale datasets, outperforming single dataset parcellations. The new atlas has three further advantages: First, the regions are hierarchically organized across 3 levels, allowing analyses at the appropriate level of granularity. Second, by constraining the boundaries to be the same across hemispheres, we provide a symmetric version of the atlas, which is especially useful in studying functional lateralization. Finally, the atlas allows for precision mapping in individuals: The integration of the probabilistic group atlas with an individual localizer scan results in a marked improvement in prediction of individual boundaries. Overall, the new atlas is an important resource for the study of the interdigitated functional organization of the human cerebellum in health and disease.

Overlapping and parallel cerebello-cerebral networks contributing to sensorimotor control: An intrinsic functional connectivity study

2013

In concert with sensorimotor control areas of the cerebrum, the cerebellum shows differential activation patterns during a variety of sensorimotor-related tasks. However, the spatial details and extent of the complex and heterogeneous cerebello-cerebral systems involved in action control remain uncertain. In this study, we use intrinsic functional connectivity (iFC) to examine cerebello-cerebral networks of five cerebellar lobules (I-IV, V, VI, and VIIIa/b) that have been empirically identified to form the functional basis of sensorimotor processes. A refined cerebellar seed-region selection allowed us to identify a network of primary sensorimotor and supplementary motor areas (I-V), a network of prefrontal, premotor, occipito-temporal and inferiorparietal regions (VI), and two largely overlapping networks involving premotor and superior parietal regions, the temporo-parietal junction as well as occipito-temporal regions (VIIIa/b). All networks involved the medial prefrontal/cingulate cortex. These cerebral clusters were used in a partial correlation analysis to systematically map cerebral connectivity throughout the entire cerebellum. We discuss these findings in the framework of affective and cognitive control, sensorimotor, multisensory systems, and executive/language systems. Within the cerebellum we found that cerebro-cerebellar systems seem to run in parallel, as indicated by distinct sublobular functional topography of prefrontal, parietal, sensorimotor, cingulate, and occipito-temporal regions. However, all areas showed overlapping connectivity to various degrees in both hemispheres. The results of both analyses demonstrate that different sublobular parts of the cerebellar lobules may dominate in different aspects of primary or higher-order sensorimotor processing. This systems-level cerebellar organization provides a more detailed structure for cerebello-cerebral interaction which contributes to our understanding of complex motor behavior.