Testis-Specific Bb8 Is Essential in the Development of Spermatid Mitochondria (original) (raw)
Related papers
Spermitin: A Novel Mitochondrial Protein in Drosophila Spermatids
PLoS ONE, 2014
Mitochondria, important energy centers in the cell, also control sperm cell morphogenesis. Drosophila spermatids have a remarkably large mitochondrial formation called the nebenkern. Immediately following meiosis during sperm development, the mitochondria in the spermatid fuse together into two large aggregates which then wrap around one another to produce the spherical nebenkern: a giant mitochondrion about 6 micrometers in diameter. The fused mitochondria play an important role in sperm tail elongation by providing a structural platform to support the elongation of sperm cells. We have identified a novel testis-specific protein, Spermitin (Sprn), a protein with a Pleckstrin homology-like (PH) domain related to Ran-binding protein 1 at its C-terminus. Fluorescence microscopy showed that Sprn localizes at mitochondria in transfected Kc167 cells, and in the nebenkern throughout spermatid morphogenesis. The role of Sprn is unclear, as sprn mutant males are fertile, and have sperm tail length comparable to the wild-type.
BMC cell biology, 2017
In Drosophila early post-meiotic spermatids, mitochondria undergo dramatic shaping into the Nebenkern, a spherical body with complex internal structure that contains two interwrapped giant mitochondrial derivatives. The purpose of this study was to elucidate genetic and molecular mechanisms underlying the shaping of this structure. The knotted onions (knon) gene encodes an unconventionally large testis-specific paralog of ATP synthase subunit d and is required for internal structure of the Nebenkern as well as its subsequent disassembly and elongation. Knon localizes to spermatid mitochondria and, when exogenously expressed in flight muscle, alters the ratio of ATP synthase complex dimers to monomers. By RNAi knockdown we uncovered mitochondrial shaping roles for other testis-expressed ATP synthase subunits. We demonstrate the first known instance of a tissue-specific ATP synthase subunit affecting tissue-specific mitochondrial morphogenesis. Since ATP synthase dimerization is known...
PLOS Genetics
Drosophila melanogaster sperm reach an extraordinary long size, 1.8 mm, by the end of spermatogenesis. The mitochondrial derivatives run along the entire flagellum and provide structural rigidity for flagellar movement, but its precise function and organization is incompletely understood. The two mitochondrial derivatives differentiate and by the end of spermatogenesis the minor one reduces its size and the major one accumulates paracrystalline material inside it. The molecular constituents and precise function of the paracrystalline material have not yet been revealed. Here we purified the paracrystalline material from mature sperm and identified by mass spectrometry Sperm-Leucylaminopeptidase (S-Lap) family members as important constituents of it. To study the function of SLap proteins we show the characterization of classical mutants and RNAi lines affecting of the SLap genes and the analysis of their mutant phenotypes. We show that the male sterile phenotype of the SLap mutants is caused by defects in paracrystalline material accumulation and abnormal structure of the elongated major mitochondrial derivatives. Our work shows that SLap proteins localize and accumulate in the paracrystalline material of the major mitochondrial derivative. Therefore, we propose that SLap proteins are important constituents of the paracrystalline material of Drosophila melanogaster sperm.
Mitochondrial regulation in spermatogenesis
Reproduction
The classic roles of mitochondria in energy production, metabolism, and apoptosis have been well defined. However, a growing body of evidence suggests that mitochondria are also active players in regulating stem cell fate decision and lineage commitment via signaling transduction, protein modification, and epigenetic modulations. This is particularly interesting for spermatogenesis, during which germ cells demonstrate changing metabolic requirements across various stages of development. It is increasingly recognized that proper male fertility depends on exquisitely controlled plasticity of mitochondrial features, activities, and functional states. The unique role of mitochondria in germ cell ncRNA processing further adds another layer of complexity to mitochondrial regulation during spermatogenesis. In this review, we will discuss potential regulatory mechanisms of how mitochondria swiftly reshape their features, activities, and functions to support critical germ cell fate transitio...
Biology of Reproduction, 2006
Sperm mitochondria undergo remodeling during posttesticular maturation that includes extensive disulfide cross-linking of proteins of the outer membrane to form the insoluble mitochondrial capsule. The relationship of these changes to mitochondrial function in mature gametes is unclear. The phospholipid hydroperoxide glutathione peroxidase (GPX4; also termed PHGPx) represents a major disulfide bond-stabilized protein of the mitochondrial capsule, and it is readily released by disulfide-reducing agents. However, in addition to GPX4, we detected a second major protein of 26 kDa (MP26) that was eluted from purified hamster sperm tails by the disulfidereducing agent dithiothreitol. The objectives of the present study were to identify and characterize MP26 and to explore its potential role in mitochondrial function. Proteomic analysis of MP26 by matrix-assisted laser desorption/ionization time-offlight (MALDI-TOF) identified 14 peptides with sequence identity to a member of the short-chain dehydrogenase/ reductase superfamily termed P26h, which was implicated previously in hamster sperm-zona binding, and with high sequence similarity to mouse lung carbonyl reductase. Indirect immunofluorescence localized MP26 to the midpiece, and twodimensional PAGE and immunoblot analysis identified a single MP26 isoform of pI 9.0. Immunoblot analyses of cauda epididymal fluid and of purified sperm plasma membranes and mitochondria revealed the exclusive localization of MP26 to the mitochondrial fraction. These data indicate that MP26 does not function in zona binding; instead, like GPX4, it may be associated with the mitochondrial capsule and play an important role in sperm mitochondrial function.
PLOS ONE, 2015
Mitochondria have an active role in germ line development, and their inheritance dynamics are relevant to this process. Recently, a novel protein (RPHM21) was shown to be encoded in sperm by the male-transmitted mtDNA of Ruditapes philippinarum, a species with Doubly Uniparental Inheritance (DUI) of mitochondria. In silico analyses suggested a viral origin of RPHM21, and we hypothesized that the endogenization of a viral element provided sperm mitochondria of R. philippinarum with the ability to invade male germ line, thus being transmitted to the progeny. In this work we investigated the dynamics of germ line development in relation to mitochondrial transcription and expression patterns using qPCR and specific antibodies targeting the germ line marker VASPH (R. philippinarum VASA homolog), and RPHM21. Based on the experimental results we conclude that both targets are localized in the primordial germ cells (PGCs) of males, but while VASPH is detected in all PGCs, RPHM21 appears to be expressed only in a subpopulation of them. Since it has been predicted that RPHM21 might have a role in cell proliferation and migration, we here suggest that PGCs expressing it might gain advantage over others and undertake spermatogenesis, accounting for RPHM21 presence in all spermatozoa. Understanding how foreign sequence endogenization and co-option can modify the biology of an organism is of particular importance to assess the impact of such events on evolution.
2014
Almost all animals contain mitochondria of maternal origin only, but the exact mechanisms underlying this phenomenon are still vague. We investigated the fate of Drosophila paternal mitochondria after fertilization. We demonstrate that the sperm mitochondrial derivative (MD) is rapidly eliminated in a stereotypical process dubbed paternal mitochondrial destruction (PMD). PMD is initiated by a network of vesicles resembling multivesicular bodies and displaying common features of the endocytic and autophagic pathways. These vesicles associate with the sperm tail and mediate the disintegration of its plasma membrane. Subsequently, the MD separates from the axoneme and breaks into smaller fragments, which are then sequestered by autophagosomes for degradation in lysosomes. We further provide evidence for the involvement of the ubiquitin pathway and the autophagy receptor p62 in this process. Finally, we show that the ubiquitin ligase Parkin is not involved in PMD, implying a divergence from the autophagic pathway of damaged mitochondria.
Biology of Reproduction, 2000
The strictly maternal inheritance of mitochondria and mitochondrial DNA (mtDNA) in mammals is a developmental paradox promoted by an unknown mechanism responsible for the destruction of the sperm mitochondria shortly after fertilization. We have recently reported that the sperm mitochondria are ubiquitinated inside the oocyte cytoplasm and later subjected to proteolysis during preimplantation development (P. Sutovsky et al., Nature 1999; 402:371-372). Here, we provide further evidence for this process by showing that the proteolytic destruction of bull sperm mitochondria inside cow egg cytoplasm depends upon the activity of the universal proteolytic marker, ubiquitin, and the lysosomal apparatus of the egg. Binding of ubiquitin to sperm mitochondria was visualized by monospecific antibodies throughout pronuclear development and during the first embryonic divisions. The recognition and disposal of the ubiquitinated sperm mitochondria was prevented by the microinjection of anti-ubiquitin antibodies and by the treatment of the fertilized zygotes with lysosomotropic agent ammonium chloride. The postfecundal ubiquitination of sperm mitochondria and their destruction was not seen in the hybrid embryos created using cow eggs and sperm of wild cattle, gaur, thus supporting the hypothesis that sperm mitochondrion destruction is species specific. The initial ligation of ubiquitin molecules to sperm mitochondrial membrane proteins, one of which could be prohibitin, occurs during spermatogenesis. Even though the ubiquitin cross-reactivity was transiently lost from the sperm mitochondria during epididymal passage, likely as a result of disulfide bond cross-linking, it was restored and amplified after fertilization. Ubiquitination therefore may represent a mechanism for the elimination of paternal mitochondria during fertilization. Our data have important implications for anthropology, treatment of mitochondrial disorders, and for the new methods of assisted procreation, such as cloning, oocyte cytoplasm donation, and intracytoplasmic sperm injection.
Scientific reports, 2017
Estrogen related receptors (ERRs), categorized as orphan nuclear receptors, are critical for energy homeostasis and somatic development. However, significance of ERRs in the development of reproductive organs/organelles/cells remain poorly understood, albeit their homology to estrogen receptors. In this context, here, we show that knockdown of ERR in the testes leads to improperly developed testes with mis-regulation of genes (aly, mia, bruce, bam, bgcn, fzo and eya) involved in spermatogenesis, resulting in reduced male fertility. The observed testicular deformity is consistent with the down-regulation of SOX-E group of gene (SOX100B) in Drosophila. We also show dispersion/disintegration of fusomes (microtubule based structures associated with endoplasmic reticulum derived vesicle, interconnecting spermatocytes) in ERR knockdown testes. A few ERR knockdown testes go through spermatogenesis but have significantly fewer sperm. Moreover, flagella of these sperm are defective with abno...