Climatic influence on mesophilic Bacillus cereus and psychrotolerant Bacillus weihenstephanensis populations in tropical, temperate and alpine soil (original) (raw)

Abstract

Bacillus weihenstephanensis strains are psychrotolerant and grow from below 78C to 388C. Closely related mesophilic Bacillus cereus strains can grow from above 78C to 468C. We classi®ed 1060 B. cereus group isolates from different soil samples with respect to their psychrotolerant and mesophilic genotypes by polymerase chain reaction (PCR) targeting of speci®c 16S rDNA and cold shock protein A gene signatures. In parallel, growth tests at 78C were carried out to determine the thermal phenotype. The geographic distribution of psychrotolerant and mesophilic isolates was found to depend signi®cantly on the prevalent annual average temperature. In one tropical, one temperate and two alpine habitats, the proportion of psychrotolerant cspA genotypes was found to be 0%, 45% and 86% and 98%, respectively, with the corresponding annual average temperatures being 288C, 78C, 48C and 18C. In the tropical habitat, only the mesophilic B. cereus was found, characterized by correspondence of thermal genotype and phenotype. In the alpine habitat, almost only the psychrotolerant B. weihenstephanensis was isolated. In the temperate habitat, mesophilic B. cereus and psychrotolerant B. weihenstephanensis as well as`intermediate thermal types' occurred, the latter having opposite thermal genotypes and phenotypes or opposing sets of thermal DNA signatures, characterized by the coexistence of mesophilic and psychrotolerant 16S rDNA operon copies within a single isolate. Both sugar utilization and DNA ®ngerprinting patterns revealed a high, probably non-clonal microsite diversity within the population of the temperate habitat. We interpret our observations in terms of a temperature-dependent selection regime, acting on recombining B. cereus/ B. weihenstephanensis populations in soil.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (49)

  1. Alef, K. (1991) Methodenhandbuch Bodenmikrobiologie: aktivita È ten, Biomasse, Differenzierung. Lech, Germany: ecomed, Landsberg, pp. 13, 17 and 40.
  2. Alef, K., and Nannipieri, P. (eds) (1995) Methods in Applied Soil Microbiology and Biochemistry. London: Academic Press, pp. 146±159.
  3. Alexander, M. (1996) Microbial communities and interactions: a prelude. In Manual of Environmental Microbiology. Hurst, C.J. (ed.). Washington, DC: American Society for Micro- biology Press, pp. 5±13.
  4. Andersson, A., Ro È nner, U., and Granum, P.E. (1995) What problems does the food industry have with the spore-form- ing pathogens Bacillus cereus and Clostridium perfrin- gens? Int J Food Microbiol 28: 145±155.
  5. Astwood, A.C., and Wais, C. (1997) Psychrotrophic bacteria isolated from a constantly warm tropical environment. Curr Microbiol 36: 148±151.
  6. Azuma, Y., Newton, S.B., and Witter, L.D. (1962) Production of psychrophilic mutants from mesophilic bacteria by ultra- violet irradiation. J Dairy Sci 45: 1529±1530.
  7. Bach, H.-J., Trevors, J., and Munch, J.C. (1999) Sources of soil proteases and investigation of gene expression at the transcriptional level. In Microbiol Systems: New Frontiers. Proceedings of the Eighth International Symposium on Microbial Ecology. Bell, C.R., Brylinsky, M., and John- son-Green, P. (eds). Halifax, Canada: Atlantic Canada Society for Microbial Ecology, p. 8.
  8. Bassam, B.J., Caetano-Anolle  s, G., and Gresshoff, P.M. (1992) DNA ampli®cation ®ngerprinting of bacteria. Appl Microbiol Biotechnol 38: 70±76.
  9. Bennet, A.F., Dao, K.M., and Lenski, R.E. (1990) Rapid evo- lution in response to high-temperature selection. Nature 346: 79±81.
  10. Blagoeva, B., Slavov, S., and Varsano, L. (1995) Possibilities for biological control of black-shank disease in tobacco with Bacillus cereus. Biotekhnologiya and Biotekhnika. Biotech- nol Biotechnol Equipment 9: 36±39.
  11. Caetano-Anolle  s, G. (1997) DNA ampli®cation ®ngerprinting. In Fingerprinting Methods based on Arbitrarily Primed PCR. Micheli, M.R., and Bova, R. (eds). New York: Springer, pp. 65±80.
  12. Carlson, C.R., Caugant, D.A., and Kolstù, A.-B. (1994) Geno- typic diversity among B. cereus and B. thuringiensis. Appl Environ Microbiol 60: 1719±1725.
  13. Fernandez-Herrera, M., De-Mingo, I.G., and Blat-Martin, N. (1987) Inositol hexaphosphate `in vitro' mineralization by means of two B. cereus strains. Anal Edafologia Agrobiolo- giea 46: 423±432.
  14. Drobniewski, F.A. (1993) Bacillus cereus and related species. Clin Microbiol Rev 6: 324±338.
  15. Francis, K.P., Mayer, R., von Stetten, F., Stewart, G.S.A.B., and Scherer, S. (1998) Discrimination of psychrotrophic and mesophilic strains of the Bacillus cereus group by PCR targeting of major cold shock protein genes. Appl Environ Microbiol 64: 3525±3529.
  16. Gracõ Âa-Armesto, M.R., and Sutherland, A.D. (1997) Tem- perature characterization of psychrotrophic and mesophilic Bacillus species from milk. J Dairy Res 64: 261±270.
  17. Graham, J.B., and Istock, C.A. (1978) Genetic exchange in Bacillus subtilis in soil. Mol Gen Genet 166: 287±290.
  18. Graham, J.B., and Istock, C.A. (1979) Gene exchange and natural selection cause Bacillus subtilis to evolve in soil cul- ture. Science 204: 637±639.
  19. Graham, J.B., and Istock, C.A. (1981) Parasexuality and microevolution in experimental populations of Bacillus sub- tilis. Evolution 35: 954±936.
  20. Granum, P.E., and Lund, T. (1997) Bacillus cereus and its food poisoning toxins. FEMS Microbiol Lett 157: 223±228.
  21. Grosskopf, J.C., and Harper, W.J. (1974) Isolation and iden- ti®cation of psychrotrophic sporeformers in milk. Milchwis- senschaft 29: 467±470.
  22. Halverson, L.J., and Handelsman, J. (1991) Enhancement of soybean nodulation by Bacillus cereus UW85 in the ®eld and in a growth chamber. Appl Environ Microbiol 57: 2767±2770.
  23. Helgason, E., Caugant, D.A., Lecadet, M.-M., Chen, Y., Mahillon, J., Lo Èvgren, A., et al. (1998) Genetic diversity of B. cereus/B. thuringiensis isolates from natural sources. Curr Microbiol 37: 80±87.
  24. Istock, C.A., Duncan, K.E., Ferguson, N., and Zhou, X. (1992) Sexuality in a natural population of bacteria ± Bacil- lus subtilis challenges the clonal paradigm. Mol Ecol 1: 95± 103. Kaijalainen, S., Karhunen, P.J., Lalu, K., and Lindstro È m, K. (1993) An alternative hot start technique for PCR in small volumes using beads of wax-embedded reaction compo- nents dried in trehalose. Nucleic Acids Res 21: 2959± 2960.
  25. Lechner, S., Mayr, R., Francis, K.P., Pru È û, B.M., Kaplan, T., Wieûner-Gunkel, E., Stewart, G.S.A.B., and Scherer, S. (1998) Bacillus weihenstephanesis sp. nov. is a new psy- chrotolerant species of the Bacillus cereus group. Int J Syst Bacteriol 48: 137±1382.
  26. Legendre, P., and Legendre, L. (1998) Numerical Ecology. Amsterdam: Elsevier, p. 241.
  27. Li, Z., Pan, Y., Wu, Q., and Li, L. (1989) Numbers, compo- sitions and enzyme activities of denitri®ers in paddy soils of Taihu Lake district (China). Acta Pedolog Sin 26: 79±86.
  28. McArthur, J.V., Kovacic, D.A., and Smith, M.H. (1988) Genetic diversity in natural populations of a soil bacterium across a landscape gradient. Proc Natl Acad Sci USA 85: 9621±9624.
  29. Maplestone, P.A., and Campbell, R. (1989) Colonization of roots of wheat seedlings by bacilli proposed as biocontrol agents against take all. Soil Biol Biochem 21: 543±550.
  30. Mayr, B., Kaplan, T., Lechner, S., and Scherer, S. (1996) Identi®cation and puri®cation of a family of dimeric major cold shock protein homologs from the psychrotrophic Bacil- lus cereus WSBC 10201. J Bacteriol 178: 2916±2925.
  31. Meer, R., Baker, J., Bodyfelt, F.W., and Grif®ths, M.W. (1991) Psychrotrophic Bacillus spp. in ¯uid milk products: a review. J Food Protect 54: 969±979.
  32. Milner, J.L., Silo-Suh, L., Lee, J.C., He, H., Clardy, J., and Handelsman, J. (1996) Production of kanosamine by Bacil- lus cereus UW85. Appl Environ Microbiol 62: 3061±3065.
  33. O'Rourke, M., and Stevens, E. (1993) Genetic structure of Neisseria gonorrhoeae populations. J Gen Microbiol 139: 2603±2611.
  34. Paterno, E.S., Sison, M.l.Q., Gracia, M.O., Laude, J.M., and Pisigan, J.S. (1995) Growth promotion of tomato (Lycoper- sicon esculentum ) by bacteria. Philippine J Biotechnol 6: 41.
  35. Pru È û, B.M., Francis, K.P., von Stetten, F., and Scherer, S. (1999) Correlation of 16S ribosomal DNA signature sequ- ences with temperature-dependent growth rates of meso- philic and psychrotolerant strains of the Bacillus cereus group. J Bacteriol 181: 2624±2630.
  36. Salama, H.S., Foda, M., Zaki, F., and Ragaei (1986) On the distribution of Bacillus thuringiensis and closely related Bacillus cereus in Egyptian soils and their activity against cotton insects. Z Angew Zool 73: 257±265.
  37. Schinner, F., O È hlinger, R., Kandeler, E., and Margesin, R. (eds) (1993) Bodenbiologische Arbeitsmethoden. Berlin: Springer, pp. 6±22.
  38. Schweder, M.E., Shatters, Jr, R.G., West, S.H., and Smith, L.R. (1994) Effect of transition interval between melting and annealing temperatures on RAPD analyses. Biotech- niques 19: 38±42.
  39. Selander, R.K. (1980) Genetic diversity and structure in Escherichia coli populations. Science 210: 545±547.
  40. Smith, J.M., Smith, N.H., O'Rourke, M., and Spratt, B.G. (1993) How clonal are bacteria? Proc Natl Acad Sci USA 90: 4384±4388.
  41. von Stetten, F., Francis, K.P., Lechner, S., Neuhaus, K., and Scherer, S. (1998) Rapid discrimination of psychrotolerant and mesophilic strains of the Bacillus cereus group by PCR targeting of 16S rDNA. J Microbiol Methods 34: 99±106.
  42. Tibayrenc, M. (1996) Towards a uni®ed evolutionary genetics of microorganisms. Annu Rev Microbiol 50: 401±429.
  43. Todd, E.C.D. (1992) Food-borne disease in Canada ± a 10-year summary from 1975 to 1984. J Food Protect 55: 123±132.
  44. Watterson, J. (1985) A procedure for estimating Bacillus cereus spores in soil and stream-sediment samples ± a potential exploration technique. J Geochem Exploration 23: 243±252.
  45. Weber, E. (1967) Grundriss der Biologischen Statistik. Stutt- gart: Gustav Fischer-Verlag, p. 226.
  46. Whittam, T.S. (1992) Sex in the soil. Curr Biol 2: 676±678.
  47. Wilson, K.H. (1987) Preparation of genomic DNA from bac- teria. In Current Protocols in Molecular Biology. Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidmann, J.G., Smith, J.A., et al. (eds). New York: Wiley, pp. 2.4.1± 2.4.2.
  48. Wise, M.G., Shimkets, L.J., and McArthur, J.V. (1995) Genetic structure of a lytic population of Burkholderia (Pseudomonas ) cepacia. Appl Environ Microbiol 61: 1791±1798.
  49. Woodborn, M.A., Yousten, A.A., and Hilu, K.H. (1995) Ran- dom ampli®ed polymorphic DNA ®ngerprinting of mosquito- pathogenic and non-pathogenic strains of Bacillus sphaeri- cus. Int J Syst Bacteriol 45: 212±217.