Influence Of The Filament Winding ProcessVariables On The Mechanical Behavior Of AComposite Pressure Vessel (original) (raw)
Related papers
Design of fiber-reinforced composite pressure vessels under various loading conditions
Composite Structures, 2002
An analytical procedure is developed to design and predict the behavior of fiber reinforced composite pressure vessels. The classical lamination theory and generalized plane strain model is used in the formulation of the elasticity problem. Internal pressure, axial force and body force due to rotation in addition to temperature and moisture variation throughout the body are considered. Some 3D failure theories are applied to obtain the optimum values for the winding angle, burst pressure, maximum axial force and the maximum angular speed of the pressure vessel. These parameters are also investigated considering hygrothermal effects.
Development of a new generation of filament wound composite pressure cylinders
Composites Science and Technology, 2009
A new generation of composite pressure vessels for large scale market applications has been studied in this work. The vessels consist on a thermoplastic liner wrapped with a filament winding glass fibre reinforced polymer matrix structure. A high density polyethylene (HDPE) was selected as liner and a thermosetting resin was used as matrices in the glass reinforced filament wound laminate.
Volume 5: High-Pressure Technology; ASME NDE Division; Rudy Scavuzzo Student Paper Symposium, 2013
Industrial applications, especially composite structures bearing high internal pressure, and fabricated using the filament winding process face certain difficulties like the reinforcement of complex shapes, as well as the correct placement of fibers over the surface of a mandrel. In some cases the definition of the manufacturing parameters respond more to cost or time criteria rather than engineering standards, reducing largely the advantages of the said manufacturing process. In order to overcome these obstacles, this research aims to propose a solution that permits to fabricate complex shapes with the desired winding angles at a certain region of complex-shaped mandrels. A numerical tool that simulates the placement of fiber tows over the surface of complex geometries is developed and validated by means of the fabrication of convex and concave composite structures using detachable mandrels. Previous results show that it is feasible to wind complex geometries with good accuracy.
2018
Composite pressure vessels made by filament winding processes are commonly used in aerospace design due to weight saving compared to metal parts. This technique involves complexities in analyzing the geometry especially in the dome section. Tools already exist to predict the geometrical characteristics like winding angle, ply thickness or some singularities. However they are limited to specific sequence dome lay-up. A numerical tool has been developed to simulate windings layer after layer. The goal is to deal with any kind of sequence dome lay-up calculation. To ensure this there are three main challenges that are seldom cited in scientific literature. The first is when the geometry of the current ply overlaps the inferior ply. The second is the management of convex parts of a ply. Finally, our mathematical tool is able to deal with the accumulation of composite fibers near the polar boss outer radius.
Composite Structures, 2002
In this study filament winding patterns are simulated using semi-geodesic fiber path equation for an arbitrary surface. As the fiber path depends on the surface where fibers are wound, the fiber angle varies in the longitudinal and thickness directions of a pressure tank. Finite element analyses are performed considering fiber angle variation in the longitudinal and thickness directions by ABAQUS. From the stress results of pressure tanks, maximum stress criterion in the transverse direction is applied to modify material properties of failed region. At the end of each load increment, resultant layer stresses are compared with a failure criterion and the mechanical properties are reduced to 1/10 for the failed layer. Results of progressive failure analysis are compared with two experimental data. Parametric studies such as the boss to cylinder radius ratio, R b /R c , thickness, and winding angle are done to investigate their effects on the performance of pressure tanks.
Among these ages, the one of current importance and future dominance is the age of composites and Nano-Materials. Manual layup method for FRP reinforcement is very old and traditional method. There is no other way to make fibre and epoxy resin and hardener coated surface on the steel tank, inside or outside for strength and corrosion free. The same time the detailed study of present manual hand layup winding of Filament activity indicates that the process suffers from various draw back like lack of accuracy which results in cracks, weak structure and instability in surface and round cylinders, low production rate E-Glass fibre is one of the essential elements of reinforced Plastics with epoxy resin in aerospace, Pipe industries, Pressure vessel and Marin Industries. These Fibre roving and their reinforcement are used for strengthening pressure vessel, cylinder of thick and thin structure for increase life and trouble free maintenance. In order to remove above drawbacks and formulate an approximate experimental data based model by using E-Glass fibre, Epoxy resin, and hardener for Filament winding activity. Design of experimental work is executed for establishing, formulation of experimental mathematical model for processing time, Density, fibre volume fraction, weight of shell, and Ultimate tensile strength of FRP Shell by obtaining specified result with Filament winding. Experimentation data is chosen, using methodology of engineering experimentation for CNC filament winding machine. This research also includes the design, fabrication and Mass Production of Pressure vessel with Filament winding along with theory of experimentation. It also includes formulation of mathematical model and its sensitivity analysis, reliability, optimization and limiting values and ANN. Out of which process for formulation of mathematical model established. Field Data collected from Vendors and In-house for a prediction model was then developed to predict effect of parameters. The basic steps used in generating the model adopted in the development of the prediction model are: collection of experimental data; analysis of data, pre-processing and feature extraction of the data, design of the prediction model, training of the model and finally testing the model to validate the results and its ability to predict Filament winding operation. This research work presents an experimental investigations and sequential classical experimentation technique used to perform experiments for various independent parameters. An attempt is made to optimize the process parameters for processing time, Density, fibre volume fraction, weight of shell, and Ultimate tensile strength. The test results proved processing time, Density, fibre volume fraction, weight of shell, and Ultimate tensile strength are significantly influenced by changing important five dimensionless π terms.
Composites Science and Technology, 2008
The influence of winding pattern on the mechanical response of filament wound glass/epoxy cylinders exposed to external pressure is studied by testing cylindrical specimens having stacked layers with coincident patterns in a hyperbaric testing chamber. Different analytical models are evaluated to predict buckling pressure and modes of thin wall cylinders (diameter to thickness ratio d/h of 25) and satisfactory predictions are obtained which are in the same order of magnitude that those obtained in experimental results. Test results show no evident pattern influence on either strength (implosion pressure) or buckling behavior (buckling modes) of thin wall or thick wall (d/h of 10) cylinders.
Design and Finite Element analysis of Thick walled Laminated Composite Pressure Vessel
International Journal of Innovative Technology and Exploring Engineering, 2019
Composite materials in general offer a high potential for manufacturing of structures with featuring an interesting mechanical performance, mainly with regards to specific stiffness, specific strength, damage tolerance and energy absorption capability. In current analysis, glass fibre reinforced in epoxy resin to form a laminated composite walled pressure vessel(filament winding) is considered for design. The purpose of this work is primarily to perform finite element analysis (FEA) of a composite walled pressure vessel (CPV) under different loads. Different design stresses and strains are evaluated using Lame’s equation. These outcomes are tabulated and examined with the results of the steel walled pressure vessel used for LPG. It is foundthat CPV is a suitable vessel for LPG storage and it can be replaced current LPG steel walled vessel to CPV.
Global Journal of Researches in Engineering:
In this present study the post buckling cha-racteristics of moderately thick-walled filament-wound carbon–epoxy composite cylinders under external hydrostatic pressure were investigated through finite element analysis for under water vehicle applications. The winding angles were [±30/90] FW, [±45/90] FW and [±60/90] FW. Finite element software ANSYS 14.0 were used to predicted the buckling pressure of filament-wound composite cylinders. For the finite element modeling of a composite cylinder, an eight-node shell element is used. To verify the finite element results for comparison, three finite element software, MSC/NASTRAN, MSC/MARC and an in-house program ACOS were used. Among these software’s, the finite element software ANSYS predicts the buckling loads within 1.5% deviation. The analysis and test results showed that the cylinders do not recover the initial buckling pressure after buckling and that this leads directly to the collapse. Major failure modes in the analysis were dominated by the helical winding angles. The finite element analysis shows global buckling modes with four waves in the hoop direction.