Biophysical and biological activity of a synthetic 8.7-kDa hydrophobic pulmonary surfactant protein SP-B (original) (raw)
Related papers
Peptide-based synthetic pulmonary surfactant for the treatment of respiratory distress disorders
Current Opinion in Chemical Biology, 2016
KL 4 (Sinapultide) represents the first peptide-based replacement for surfactant protein B in pulmonary surfactant (PS) therapies approved for clinical use. Surfaxin, its formulation with PS lipids, shows the promise of synthetic PS for replacing animal-derived PS in the treatment of respiratory distress syndromes and for treating acute lung injury. Efforts to characterize the molecular basis for KL 4 function have revealed the peptide exhibits a helical structure which differentially partitions in response to both lipid saturation levels and pH. The penta-residue repeat of KL 4 leads to adaptive peptide helicity, varying with partitioning depth, and suggests structural plasticity may represent an important mechanism for differential trafficking of lipids, particularly in intra-alveolar surfactant for the formation of stable DPPC monolayers at air-water interfaces.
PeerJ, 2016
This study examines the biophysical and preclinical pulmonary activity of synthetic lung surfactants containing novel phospholipase-resistant phosphonolipids or synthetic glycerophospholipids combined with Super Mini-B (S-MB) DATK and/or SP-Css ion-lock 1 peptides that replicate the functional biophysics of surfactant proteins (SP)-B and SP-C. Phospholipase-resistant phosphonolipids used in synthetic surfactants are DEPN-8 and PG-1, molecular analogs of dipalmitoyl phosphatidylcholine (DPPC) and palmitoyl-oleoyl phosphatidylglycerol (POPG), while glycerophospholipids used are active lipid components of native surfactant (DPPC:POPC:POPG 5:3:2 by weight). The objective of the work is to test whether these novel lipid/peptide synthetic surfactants have favorable preclinical activity (biophysical, pulmonary) for therapeutic use in reversing surfactant deficiency or dysfunction in lung disease or injury. Surface activity of synthetic lipid/peptide surfactants was assessed in vitro at 37 ...
Synthetic Pulmonary Surfactant Preparations: New Developments and Future Trends
Current Medicinal Chemistry, 2008
Pulmonary surfactant is a lipid-protein complex that coats the interior of the alveoli and enables the lungs to function properly. Upon its synthesis, lung surfactant adsorbs at the interface between the air and the hypophase, a capillary aqueous layer covering the alveoli. By lowering and modulating surface tension during breathing, lung surfactant reduces respiratory work of expansion, and stabilises alveoli against collapse during expiration. Pulmonary surfactant deficiency, or dysfunction, contributes to several respiratory pathologies, such as infant respiratory distress syndrome (IRDS) in premature neonates, and acute respiratory distress syndrome (ARDS) in children and adults. The main clinical exogenous surfactants currently in use to treat some of these pathologies are essentially organic extracts obtained from animal lungs. Although very efficient, natural surfactants bear serious defects: i) they could vary in composition from batch to batch; ii) their production involves relatively high costs, and sources are limited; and iii) they carry a potential risk of transmission of animal infectious agents and the possibility of immunological reaction. All these caveats justify the necessity for a highly controlled synthetic material. In the present review the efforts aimed at new surfactant development, including the modification of existing exogenous surfactants by adding molecules that can enhance their activity, and the progress achieved in the production of completely new preparations, are discussed.
Surfactant Protein B and C Analogues
Molecular Genetics and Metabolism, 2000
Mammalian lung surfactant is a mixture of phospholipids and four surfactant-associated proteins (SP-A, SP-B, SP-C, and SP-D). Its major function is to reduce surface tension at the air-water interface in the terminal airways by the formation of a surface-active film highly enriched in dipalmitoyl phosphatidylcholine (DPPC), thereby preventing alveolar collapse during expiration. SPA and SP-D are large hydrophilic proteins, which play an important role in host defense, whereas the small hydrophobic peptides SP-B and SP-C interact with DPPC to generate and maintain a surface-active film. Surfactant replacement therapy with bovine and porcine lung surfactant extracts, which contain only polar lipids and SP-B and SP-C, has revolutionized the clinical management of premature infants with respiratory distress syndrome. Newer surfactant preparations will probably be based on SP-B and SP-C, produced by recombinant technology or peptide synthesis, and reconstituted with selected synthetic lipids. The development of peptide analogues of SP-B and SP-C offers the possibility to study their molecular mechanism of action and will allow the design of surfactant formulations for specific pulmonary diseases and better quality control. This review describes the hydrophobic peptide analogues developed thus far and their potential for use in a new generation of synthetic surfactant preparations.
Simple, helical peptoid analogs of lung surfactant protein B
Chemistry & biology, 2005
interface, (2) the ability to reach near-zero surface tension upon film compression, and (3) the ability to reand Annelise E. Barron* spread upon multiple compressions and expansions of Department of Chemical and Biological Engineering surface area with minimal loss of surfactant into the Northwestern University subphase [10]. LS is composed of w90% lipids and 2145 Sheridan Road w10% surfactant proteins [5, 11-15]. The hydrophobic Evanston, Illinois 60208 surfactant proteins, SP-B and SP-C, in particular are essential to the proper biophysical function of LS for breathing and are thought to be involved in the organ-Summary ization and fluidization of the lipid film [10]. Films of the main lipid component of LS, dipalmitoyl The helical, amphipathic surfactant protein, SP-B, is phosphatidylcholine (DPPC), can reach near-zero sura critical element of pulmonary surfactant and hence face tension upon compression in vitro; however, this is an important therapeutic molecule. However, it is molecule is slow to adsorb to the interface and exhibits difficult to isolate from natural sources in high purity. poor respreadability [10]. With the addition of palmitoyl-We have created and studied three different, nonnatuoleoyl phosphatidylglycerol (POPG) and/or palmitic ral analogs of a bioactive SP-B fragment (SP-B 1-25 ), acid (PA), there is an increased rate of surfactant adusing oligo-N-substituted glycines (peptoids) with sorption and better respreadability than with DPPC simple, repetitive sequences designed to favor the alone [16]. However, these lipid mixtures do not reach formation of amphiphilic helices. For comparison, a sufficiently low surface tensions [16]
Human Pulmonary Surfactant Protein SP-A1 Provides Maximal Efficiency of Lung Interfacial Films
Biophysical Journal, 2016
Pulmonary surfactant is a lipoprotein complex that reduces surface tension to prevent alveolar collapse and contributes to the protection of the respiratory surface from the entry of pathogens. Surfactant protein A (SP-A) is a hydrophilic glycoprotein of the collectin family, and its main function is related to host defense. However, previous studies have shown that SPA also aids in the formation and biophysical properties of pulmonary surfactant films at the air-water interface. Humans, unlike rodents, have two genes, SFTPA1 and SFTPA2. The encoded proteins, SP-A1 and SP-A2, differ quantitatively or qualitatively in function. It has been shown that both gene products are necessary for tubular myelin formation, an extracellular structural form of lung surfactant. The goal of this study was to investigate potential differences in the biophysical properties of surfactants containing human SP-A1, SP-A2, or both. For this purpose, we have studied for the first time, to our knowledge, the biophysical properties of pulmonary surfactant from individual humanized transgenic mice expressing human SP-A1, SP-A2, or both SP-A1 and SP-A2, in the captive bubble surfactometer. We observed that pulmonary surfactant containing SP-A1 reaches lower surface tension after postexpansion interfacial adsorption than surfactants containing no SPA or only SP-A2. Under interfacial compression-expansion cycling conditions, surfactant films containing SP-A1 also performed better, particularly with respect to the reorganization of the films that takes place during compression. On the other hand, addition of recombinant SP-A1 to a surfactant preparation reconstituted from the hydrophobic fraction of a porcine surfactant made it more resistant to inhibition by serum than the addition of equivalent amounts of SP-A2. We conclude that the presence of SP-A1 allows pulmonary surfactant to adopt a particularly favorable structure with optimal biophysical properties.
Functional importance of the NH2-terminal insertion sequence of lung surfactant protein B
AJP: Lung Cellular and Molecular Physiology, 2010
Lung surfactant protein B (SP-B) is required for proper surface activity of pulmonary surfactant. In model lung surfactant lipid systems composed of saturated and unsaturated lipids, the unsaturated lipids are removed from the film at high compression. It is thought that SP-B helps anchor these lipids closely to the monolayer in three-dimensional cylindrical structures termed "nanosilos" seen by atomic force microscopy imaging of deposited monolayers at high surface pressures. Here we explore the role of the SP-B NH2 terminus in the formation and stability of these cylindrical structures, specifically the distribution of lipid stack height, width, and density with four SP-B truncation peptides: SP-B 1-25, SP-B 9 -25, SP-B 11-25, and SP-B 1-25Nflex (prolines 2 and 4 substituted with alanine). The first nine amino acids, termed the insertion sequence and the interface seeking tryptophan residue 9, are shown to stabilize the formation of nanosilos while an increase in the insertion sequence flexibility (SP-B 1-25Nflex) may improve peptide functionality. This provides a functional understanding of the insertion sequence beyond anchoring the protein to the two-dimensional membrane lining the lung, as it also stabilizes formation of nanosilos, creating reversible repositories for fluid lipids at high compression. In lavaged, surfactant-deficient rats, instillation of a mixture of SP-B 1-25 (as a monomer or dimer) and synthetic lung lavage lipids quickly improved oxygenation and dynamic compliance, whereas SP-B 11-25 surfactants showed oxygenation and dynamic compliance values similar to that of lipids alone, demonstrating a positive correlation between formation of stable, but reversible, nanosilos and in vivo efficacy.
Influence of Pulmonary Surfactant Protein B on Model Lung Surfactant Monolayers
Langmuir, 2002
Pressure-area isotherms, Brewster angle microscopy, and grazing incidence X-ray diffraction measurements reveal that human lung surfactant protein SP-B1-78 and the dimer of the amino terminus dSP-B1-25 modify the phase behavior of lipid mixtures consisting of dipalmitoylphosphatidylcholine/palmitoyl-oleylphosphatidylglycerol/palmitic acid (DPPC/POPG/PA). The addition of SP-B increases the fraction of fluid phase in the liquid-expanded/liquid-condensed two-phase region. Brewster angle microscopy enabled the visualization of a fluid network, which separates the condensed phase domains. This network is stabilized by SP-B adsorption. GIXD measurements show that SP-B also alters the structure of the condensed chain lattice leading to higher tilt and increased area per hydrocarbon chain. The comparison of SP-B1-78 with the shorter peptide dSP-B1-25 exhibits, that the dimer alters the lipid order more drastically. The larger effects found for dSP-B1-25 were explained using a model that assumes a partial incorporation of the peptide into the layer. The specific behavior of the dimer could enhance the activity of the peptide as found in recent animal model studies. This is the first investigation showing a systematic influence of SP-B on the condensed chain lattice of phospholipids, thus verifying that SP-B not only interacts with the expanded phase, but also interactions with the condensed phase lipids have to be taken into account which might be essential for proper peptide function.
Current perspectives in pulmonary surfactant — Inhibition, enhancement and evaluation
Biochimica et Biophysica Acta (BBA) - Biomembranes, 2008
Pulmonary surfactant (PS) is a complicated mixture of approximately 90% lipids and 10% proteins. It plays an important role in maintaining normal respiratory mechanics by reducing alveolar surface tension to near-zero values. Supplementing exogenous surfactant to newborns suffering from respiratory distress syndrome (RDS), a leading cause of perinatal mortality, has completely altered neonatal care in industrialized countries. Surfactant therapy has also been applied to the acute respiratory distress syndrome (ARDS) but with only limited success. Biophysical studies suggest that surfactant inhibition is partially responsible for this unsatisfactory performance. This paper reviews the biophysical properties of functional and dysfunctional PS. The biophysical properties of PS are further limited to surface activity, i.e., properties related to highly dynamic and very low surface tensions. Three main perspectives are reviewed. (1) How does PS permit both rapid adsorption and the ability to reach very low surface tensions? (2) How is PS inactivated by different inhibitory substances and how can this inhibition be counteracted? A recent research focus of using water-soluble polymers as additives to enhance the surface activity of clinical PS and to overcome inhibition is extensively discussed. (3) Which in vivo, in situ, and in vitro methods are available for evaluating the surface activity of PS and what are their relative merits? A better understanding of the biophysical properties of functional and dysfunctional PS is important for the further development of surfactant therapy, especially for its potential application in ARDS.