Development of a photoinduced fragmentation ion trap for infrared multiple photon dissociation spectroscopy (original) (raw)
Abstract
Rationale: Methods for isomer discrimination by mass spectroscopy are of increasing interest. Here we describe the development of a 3D ion trap for Infrared Multiple Photon Dissociation (IRMPD) spectroscopy that enables the acquisition of the infrared spectrum of selected ions in the gas phase. This system is suitable for the study of myriad chemical systems, including isomer mixtures. Methods: A modified 3D ion trap was coupled to a CO2 laser and an OPO/OPA system operating in the 2300 to 4000 cm-1 range. DFT vibrational frequency calculations were carried out to support spectral assignment. Results: Detailed descriptions of the interface between the laser and the mass spectrometer, the hardware to control the laser systems, the automated system for IRMPD spectrum acquisition and data This article is protected by copyright. All rights reserved. management are presented. The optimization of the crystal position of the OPO/OPA system to maximize the spectroscopic response under low power laser radiation is also discussed. Conclusions: OPO/OPA and CO2 laser-assisted dissociation of gas ions were successfully achieved. The system was validated by acquiring the IRMPD spectra of model species and comparing with literature data. Two isomeric alkaloids of high economic importance were characterized to demonstrate the potential of this technique, which is now available as an open IRMPD spectroscopy facility in Brazil.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (94)
- Herzberg G. Faraday Lecture: Spectra and structures of molecular ions. Q Rev Chem Soc. 1971;25:201-222. doi:10.1039/qr9712500201
- Dunbar RC. Photodissociation of trapped ions. Int J Mass Spectrom. 2000;200(1-3):571-589. doi:10.1016/S1387-3806(00)00368-7
- Dunn GH. Studies of photodissociation of molecular ions. At Collis Process. 1964;1:997-1005.
- Dunbar RC. Photodissociation of the CH3Cl+ and N2O+ Cations. J Am Chem Soc. 1971. doi:10.1021/ja00747a003
- Dunbar RC, Fu EW. Photodissociation spectroscopy of gaseous toluene (C7H8+) cations. J Am Chem Soc. 1973;95(8):2716-2718. doi:10.1021/ja00789a069
- Polfer NC, Dugourd P, eds. Lecture Notes In Chemistry 83 Laser Photodissociation and Spectroscopy of Mass-Separated Biomolecular Ions. Springer International Publishing; 2013. doi:10.1007/978-3-319-01252-0
- Brodbelt JS, Wilson JJ. Infrared multiphoton dissociation in quadrupole ion traps. Mass Spectrom Rev. 28(3):390-424. doi:10.1002/mas.20216
- Dunbar RC. In the beginning was H 2 + : Mass spectrometry and the molecular spectroscopy of gas-phase ions. Int J Mass Spectrom. 2015;377:159-171. doi:10.1016/j.ijms.2014.07.049
- Peiris DM, Riveros JM, Eyler JR. Infrared multiple photon dissociation spectra of methanol- attached anions and proton-bound dimer cations. Int J Mass Spectrom Ion Process. 1996;159(1- 3):169-183. doi:10.1016/S0168-1176(96)04449-7
- Peiris DM, Yang Y, Ramanathan R, Williams KR, Watson CH, Eyler JR. Infrared multiphoton dissociation of electrosprayed crown ether complexes. Int J Mass Spectrom Ion Process. 1996;157-158:365-378. doi:10.1016/S0168-1176(96)04462-X
- Shin SK, Beauchamp JL. Infrared Multiphoton Dissociation Spectrum of CF3Mn(CO)3(NO)-. J Am Chem Soc. 1990;112(6):2066-2069. doi:10.1021/ja00162a004
- Shin SK, Beauchamp JL. Identification of Mn(CO)nCF3-(n = 4, 5) Structural Isomers by IR Multiphoton Dissociation, Collision-Induced Dissociation, and Specific Ligand Displacement Reactions: Studies of the Trifluoromethyl Migratory Decarbonylation Reaction in the Gas Phase. J Am Chem Soc. 1990;112(6):2057-2066. doi:10.1021/ja00162a003
- Gäumann T, Riveros JM, Zhu Z. The Infrared Multiphoton-Dissociation Spectra of Bromopropene Isomeric Cations. Helv Chim Acta. 1990;73(5):1215-1218. doi:10.1002/hlca.19900730510
- Polfer NC. Infrared multiple photon dissociation spectroscopy of trapped ions. Chem Soc Rev. 2011;40(5):2211-2221. doi:10.1039/c0cs00171f
- Girod M, Biarc J, Enjalbert Q, et al. Implementing visible 473 nm photodissociation in a Q- Exactive mass spectrometer: towards specific detection of cysteine-containing peptides. Analyst. 2014;139(21):5523-5530. doi:10.1039/C4AN00956H
- Greisch J-F, Tamara S, Scheltema RA, et al. Expanding the mass range for UVPD-based native top-down mass spectrometry. Chem Sci. 2019;10(30):7163-7171. doi:10.1039/C9SC01857C
- Mehaffey MR, Schardon CL, Novelli ET, et al. Investigation of GTP-dependent dimerization of G12X K-Ras variants using ultraviolet photodissociation mass spectrometry. Chem Sci. 2019;10(34):8025-8034. doi:10.1039/C9SC01032G
- Pereverzev AY, Cheng X, Nagornova NS, Reese DL, Steele RP, Boyarkin O V. Vibrational Signatures of Conformer-Specific Intramolecular Interactions in Protonated Tryptophan. J Phys Chem A. 2016;120(28):5598-5608. doi:10.1021/acs.jpca.6b05605
- Roithova J. Characterization of reaction intermediates by ion spectroscopy. Chem Soc Rev. 2012;41(2):547-559. http://dx.doi.org/10.1039/C1CS15133A.
- Inokuchi Y, Ebata T, Rizzo TR. UV and IR Spectroscopy of Transition Metal-Crown Ether Complexes in the Gas Phase: Mn 2+ (benzo-15-crown-5)(H 2 O) 0-2. J Phys Chem A. 2019;123(31):6781-6786. doi:10.1021/acs.jpca.9b05706
- Leavitt CM, Wolk AB, Fournier JA, et al. Isomer-Specific IR-IR Double Resonance Spectroscopy of D2-Tagged Protonated Dipeptides Prepared in a Cryogenic Ion Trap. J Phys Chem Lett. 2012;3(9):1099-1105. doi:10.1021/jz3003074
- Scutelnic V, Rizzo TR. Cryogenic Ion Spectroscopy for Identification of Monosaccharide Anomers. J Phys Chem A. 2019;123(13):2815-2819. doi:10.1021/acs.jpca.9b00527
- Azargun M, Meister PJ, Gauld JW, Fridgen TD. The K 2 (9-ethylguanine) 12 2+ quadruplex is more stable to unimolecular dissociation than the K(9-ethylguanine) 8 + quadruplex in the gas phase: a BIRD, energy resolved SORI-CID, IRMPD spectroscopic, and computational study. Phys Chem Chem Phys. 2019;21(28):15319-15326. doi:10.1039/C9CP01651A
- Bayat P, Gatineau D, Lesage D, Marhabaie S, Martinez A, Cole RB. Investigation of activation energies for dissociation of host-guest complexes in the gas phase using low-energy collision induced dissociation. J Mass Spectrom. 2019;54(5):437-448. doi:10.1002/jms.4345
- Daly S, MacAleese L, Dugourd P, Chirot F. Combining Structural Probes in the Gas Phase -Ion Mobility-Resolved Action-FRET. J Am Soc Mass Spectrom. 2018;29(1):133-139. doi:10.1007/s13361-017-1824-7
- Kung JCK, Forman A, Jockusch RA. The effect of methylation on the intrinsic photophysical properties of simple rhodamines. Phys Chem Chem Phys. 2019;21(20):10261-10271. doi:10.1039/C9CP00730J
- Giuliani A, Milosavljevic A, Canon F, et al. Application of VUV synchrotron radiation to proteomic and analytical mass spectrometry. J Phys Conf Ser. 2013;425(12):122001. doi:10.1088/1742-6596/425/12/122001
- Milosavljević AR, Nicolas C, Gil J-FF, et al. VUV synchrotron radiation: A new activation technique for tandem mass spectrometry. J Synchrotron Radiat. 2012;19(2):174-178. doi:10.1107/S0909049512001057
- Rodríguez Pirani LS, Cánneva A, Geronés M, et al. Formation of HCO + and HCS + Ions in the Photodissociation of CH 3 OC(S)SCH 3 under VUV Synchrotron Radiation. J Phys Chem A. 2019;123(31):6674-6682. doi:10.1021/acs.jpca.9b03670
- Cannon JR, Holden DD, Brodbelt JS. Hybridizing Ultraviolet Photodissociation with Electron Transfer Dissociation for Intact Protein Characterization. doi:10.1021/ac5036082
- Warnke S, Baldauf C, Bowers MT, Pagel K, Von Helden G. Photodissociation of conformer- selected ubiquitin ions reveals site-specific cis / trans isomerization of proline peptide bonds. J Am Chem Soc. 2014;136(29). doi:10.1021/ja502994b
- Rodrigues-Oliveira AF, M. Ribeiro FW, Cervi G, C. Correra T. Evaluation of Common Theoretical Methods for Predicting Infrared Multiphotonic Dissociation Vibrational Spectra of Intramolecular Hydrogen-Bonded Ions. ACS Omega. 2018;3(8):9075-9085. doi:10.1021/acsomega.8b00815
- Katari M, Nicol E, Steinmetz V, van der Rest G, Carmichael D, Frison G. Improved Infrared Spectra Prediction by DFT from a New Experimental Database. Chem -A Eur J. 2017;23(35):8414-8423. doi:10.1002/chem.201700340
- Oomens J, Sartakov BG, Meijer G, von Helden G. Gas-phase infrared multiple photon dissociation spectroscopy of mass-selected molecular ions. Int J Mass Spectrom. 2006;254(1- 2):1-19. doi:10.1016/j.ijms.2006.05.009
- MacAleese L, Maître P. Infrared spectroscopy of organometallic ions in the gas phase: From model to real world complexes. Mass Spectrom Rev. 2007;26(4):583-605. doi:10.1002/mas.20138
- Asmis KR, Sauer J. Mass-selective vibrational spectroscopy of vanadium oxide cluster ions. Mass Spectrom Rev. 2007;26(4):542-562. doi:10.1002/mas.20136
- Fridgen TD. Infrared consequence spectroscopy of gaseous protonated and metal ion cationized complexes. Mass Spectrom Rev. 2009;28(4):586-607. doi:10.1002/mas.20224
- Polfer NC, Oomens J. Vibrational spectroscopy of bare and solvated ionic complexes of biological relevance. Mass Spectrom Rev. 2009;28(3):468-494. doi:10.1002/mas.20215
- Eyler JR. Infrared multiple photon dissociation spectroscopy of ions in Penning traps. Mass Spectrom Rev. 2009;28(3):448-467. doi:10.1002/mas.20217
- Jašíková L, Roithová J. Infrared Multiphoton Dissociation Spectroscopy with Free-Electron Lasers: On the Road from Small Molecules to Biomolecules. Chem -A Eur J. 2018;24(14):3374- 3390. doi:10.1002/chem.201705692
- Fraschetti C, Guarcini L, Speranza M, Filippi A. Intramolecular n-type proton/hydrogen network in basic structures of vitamin B6 investigated by IRMPD spectroscopy. Int J Mass Spectrom. 2019;438:148-156. doi:10.1016/J.IJMS.2019.01.006
- Cruz-Ortiz AF, Rossa M, Berthias F, Berdakin M, Maitre P, Pino GA. Fingerprints of Both Watson-Crick and Hoogsteen Isomers of the Isolated (Cytosine-Guanine)
- H + Pair. J Phys Chem Lett. 2017;8(22):5501-5506. doi:10.1021/acs.jpclett.7b02140
- Li J, Maître P, Song D-QD-Q, et al. Differentiation of Cefaclor and its delta-3 isomer by electrospray mass spectrometry, infrared multiple photon dissociation spectroscopy and theoretical calculations. J Mass Spectrom. 2015;50(1):265-269. doi:10.1002/jms.3510
- Masson MAC, Karpfenstein R, de Oliveira-Silva D, et al. Evaluation of Ca2+ Binding Sites in Tacrolimus by Infrared Multiple Photon Dissociation Spectroscopy. J Phys Chem B. 2018;122(43):9860-9868. doi:10.1021/acs.jpcb.8b06523
- Corinti D, De Petris A, Coletti C, et al. Cisplatin Primary Complex with l -Histidine Target Revealed by IR Multiple Photon Dissociation (IRMPD) Spectroscopy. ChemPhysChem. 2017;18(3):318-325. doi:10.1002/cphc.201601172
- Gorlova O, Colvin SM, Brathwaite A, et al. Identification and Partial Structural Characterization of Mass Isolated Valsartan and Its Metabolite with Messenger Tagging Vibrational Spectroscopy. J Am Soc Mass Spectrom. 2017;28(11):2414-2422. doi:10.1007/s13361-017- 1767-z
- Martens J, Berden G, van Outersterp RE, et al. Molecular identification in metabolomics using infrared ion spectroscopy. Sci Rep. 2017;7(1):3363. doi:10.1038/s41598-017-03387-4
- Martens J, Berden G, Bentlage H, et al. Unraveling the unknown areas of the human metabolome: the role of infrared ion spectroscopy. J Inherit Metab Dis. 2018;41(3):367-377. doi:10.1007/s10545-018-0161-8
- van Outersterp RE, Houthuijs KJ, Berden G, et al. Reference-standard free metabolite identification using infrared ion spectroscopy. Int J Mass Spectrom. 2019;443:77-85. doi:10.1016/j.ijms.2019.05.015
- Pahl M, Mayer M, Schneider M, Belder D, Asmis KR. Joining Microfluidics with Infrared Photodissociation: Online Monitoring of Isomeric Flow-Reaction Intermediates. Anal Chem. 2019;91(5):3199-3203. doi:10.1021/acs.analchem.8b05532
- Santos Fernandes A, Maître P, Carita Correra T. Evaluation of the Katsuki-Sharpless Epoxidation Precatalysts by ESI-FTMS, CID, and IRMPD Spectroscopy. J Phys Chem A. 2019;123(5):1022-1029. doi:10.1021/acs.jpca.8b09979
- M. Ribeiro FW, Rodrigues-Oliveira AF, C. Correra T. Benzoxazine Formation Mechanism Evaluation by Direct Observation of Reaction Intermediates. J Phys Chem A. 2019. doi:10.1021/acs.jpca.9b05065
- Tripodi GL, Correra TC, Angolini CFF, et al. The Intermediates in Lewis Acid Catalysis with Lanthanide Triflates. European J Org Chem. 2019;2019(22):3560-3566. doi:10.1002/ejoc.201900171
- Wheeler OW, Salem M, Gao A, Bakker JM, Armentrout PB. Sequential activation of methane by Ir+: An IRMPD and theoretical investigation. Int J Mass Spectrom. 2019;435:78-92. doi:10.1016/j.ijms.2018.10.007
- Armentrout PB, Heaton AL, Ye SJ. Thermodynamics and Mechanisms for Decomposition of Protonated Glycine and Its Protonated Dimer. J Phys Chem A. 2011;115(41):11144-11155. doi:10.1021/jp2025939
- Boles GC, Kempkes LJM, Martens J, Berden G, Oomens J, Armentrout PB. Ion spectroscopy and guided ion beam studies of protonated asparaginyl-threonine decomposition: Influence of a hydroxyl containing C-Terminal residue on deamidation processes. Int J Mass Spectrom. 2019;442:64-82. doi:10.1016/j.ijms.2019.05.010
- Donald WA, Leib RD, Demireva M, O'Brien JT, Prell JS, Williams ER. Directly Relating Reduction Energies of Gaseous Eu(H2O)n3+, n = 55-140, to Aqueous Solution: The Absolute SHE Potential and Real Proton Solvation Energy. J Am Chem Soc. 2009;131(37):13328-13337. doi:doi: 10.1021/ja902815v
- Donald WA, Leib RD, O'Brien JT, Bush MF, Williams ER. Absolute Standard Hydrogen Electrode Potential Measured by Reduction of Aqueous Nanodrops in the Gas Phase. J Am Chem Soc. 2008;130(11):3371-3381. doi:10.1021/ja073946i
- Steill JD, Oomens J. Gas-phase deprotonation of p-hydroxybenzoic acid investigated by IR spectroscopy: Solution-phase structure is retained upon ESI. J Am Chem Soc. 2009;131(38):13570-13571. doi:10.1021/ja903877v
- Walhout EQ, Dorn SE, Martens J, et al. Infrared Ion Spectroscopy of Environmental Organic Mixtures: Probing the Composition of α-Pinene Secondary Organic Aerosol. Environ Sci Technol. 2019;53(13):7604-7612. doi:10.1021/acs.est.9b02077
- Poitzsch ME, Bergquist JC, Itano WM, Wineland DJ. Cryogenic linear ion trap for accurate spectroscopy. Rev Sci Instrum. 1996;67(1):129-134. http://dx.doi.org/10.1063/1.1146560.
- Wolk AB, Leavitt CM, Garand E, Johnson MA. Cryogenic ion chemistry and spectroscopy. Acc Chem Res. 2014;47(1):202-210. doi:10.1021/ar400125a
- Cismesia AP, Bailey LS, Bell MR, Tesler LF, Polfer NC. Making Mass Spectrometry See the Light: The Promises and Challenges of Cryogenic Infrared Ion Spectroscopy as a Bioanalytical Technique. J Am Soc Mass Spectrom. 2016;27(5):757-766. doi:10.1007/s13361-016-1366-4
- Oomens J, Berden G, Morton TH. Low-Frequency CH Stretch Vibrations of Free Alkoxide Ions. Angew Chemie Int Ed. 2017;56(1):217-220. doi:10.1002/anie.201609437
- Murdin BN. Far-infrared free-electron lasers and their applications. Contemp Phys. 2011;50(2):391-406. doi:doi: 10.1080/00107510902733856
- Prazeres R, Berset JM, Glotin F, Jaroszynski D, Ortega JM. Optical performance of the CLIO infrared FEL. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip. 1993;331(1):15-19. doi:http://dx.doi.org/10.1016/0168-9002(93)90006-4
- van Amersfoort PW, Bakker RJ, Bekkers JB, et al. First lasing with FELIX. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip. 1992;318(1-3):42-46. doi:http://dx.doi.org/10.1016/0168-9002(92)91021-Z
- Schöllkopf W, Gewinner S, Junkes H, et al. The new IR and THz FEL facility at the Fritz Haber Institute in Berlin. In: Biedron SG, ed. ; 2015:95121L. doi:10.1117/12.2182284
- Seo J, Hoffmann W, Warnke S, et al. An infrared spectroscopy approach to follow β-sheet formation in peptide amyloid assemblies. Nat Chem. 2017;9(1):39-44. doi:10.1038/nchem.2615
- Schliemann W, Kobayashi N, Strack D. The Decisive Step in Betaxanthin Biosynthesis Is a Spontaneous Reaction 1. Plant Physiol. 1999;119(4):1217-1232. doi:10.1104/pp.119.4.1217
- Schliemann W, Steiner U, Strack D. Betanidin formation from dihydroxyphenylalanine in a model assay system. Phytochemistry. 1998;49(6):1593-1598. doi:10.1016/S0031- 9422(98)00276-3
- Prell JS, O'Brien JT, Williams ER. IRPD spectroscopy and ensemble measurements: Effects of different data acquisition and analysis methods. J Am Soc Mass Spectrom. 2010;21(5):800-809. doi:10.1016/j.jasms.2010.01.010
- Origin(Pro), Version 9.0.0. OriginLab Corporation, Northampton, MA, USA.
- Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenb DJ. Gaussian 09, Revision A.02.
- Shao Y, Molnar LF, Jung Y, et al. Advances in methods and algorithms in a modern quantum chemistry program package. Phys Chem Chem Phys. 2006;8(27):3172-3191. doi:10.1039/B517914A
- Russell D. Johnson III, Johnson III RD. NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101 Release 14.; 2006. http://srdata.nist.gov/cccbdb.
- Dang A, Korn JA, Gladden J, Mozzone B, Tureček F. UV-Vis Photodissociation Action Spectroscopy on Thermo LTQ-XL ETD and Bruker amaZon Ion Trap Mass Spectrometers: a Practical Guide. J Am Soc Mass Spectrom. 2019;30(9):1558-1564. doi:10.1007/s13361-019- 02229-z
- Hamlow LA, Zhu Y, Devereaux ZJ, et al. Modified Quadrupole Ion Trap Mass Spectrometer for Infrared Ion Spectroscopy: Application to Protonated Thiated Uridines. J Am Soc Mass Spectrom. 2018;29(11):2125-2137. doi:10.1007/s13361-018-2047-2
- Martens J, Berden G, Gebhardt CR, Oomens J. Infrared ion spectroscopy in a modified quadrupole ion trap mass spectrometer at the FELIX free electron laser laboratory. Rev Sci Instrum. 2016;87(10):103108. doi:10.1063/1.4964703
- Nosenko Y, Menges F, Riehn C, Niedner-Schatteburg G. Investigation by two-color IR dissociation spectroscopy of Hoogsteen-type binding in a metalated nucleobase pair mimic. Phys Chem Chem Phys. 2013;15(21):8171. doi:10.1039/c3cp44283g
- Scuderi D, Bakker JM, Durand S, et al. Structure of singly hydrated, protonated phospho- tyrosine. Int J Mass Spectrom. 2011;308(2-3):338-347. doi:10.1016/j.ijms.2011.08.031
- Altinay G, Metz RB. Comparison of IRMPD, Ar-tagging and IRLAPS for vibrational spectroscopy of Ag+(CH3OH). Spec Issue Ion Spectrosc. 2010;297(1-3):41-45. doi:10.1016/j.ijms.2010.05.016
- Gardner MW, Smith SI, Ledvina AR, et al. Infrared Multiphoton Dissociation of Peptide Cations in a Dual Pressure Linear Ion Trap Mass Spectrometer. Anal Chem. 2009;81(19):8109-8118. doi:10.1021/ac901313m
- Remes PM, Glish GL. Mapping the Distribution of Ion Positions as a Function of Quadrupole Ion Trap Mass Spectrometer Operating Parameters to Optimize Infrared Multiphoton Dissociation. J Phys Chem A. 2009;113(15):3447-3454. doi:10.1021/jp808955w
- Rodrigues ACB, Mariz IDA, Macoas EMS, et al. Bioinspired water-soluble two-photon fluorophores. Dye Pigment. 2018;150:105-111. doi:10.1016/j.dyepig.2017.11.020
- Nakashima KK, Bastos EL. Rationale on the high radical scavenging capacity of betalains. Antioxidants. 2019;8(7):222. doi:10.3390/antiox8070222
- Pavliuk M V, Fernandes AB, Abdellah M, et al. Nano-hybrid plasmonic photocatalyst for hydrogen production at 20% efficiency. Sci Rep. 2017;7(1):8670. doi:10.1038/s41598-017- 09261-7
- Pavliuk M V, Cieslak AM, Abdellah M, et al. Hydrogen evolution with nanoengineered ZnO interfaces decorated using a beetroot extract and a hydrogenase mimic. Sustain Energy Fuels. 2017;1(1):69-73. doi:10.1039/C6SE00066E
- Quina FH, Bastos EL. Chemistry Inspired by the Colors of Fruits, Flowers and Wine. An Acad Bras Cienc. 2018;90(1 Suppl 1):681-695. doi:10.1590/0001-3765201820170492
- Polturak G, Aharoni A. "La Vie en Rose": Biosynthesis, Sources, and Applications of Betalain Pigments. Mol Plant. 2018;11(1):7-22. doi:10.1016/j.molp.2017.10.008
- Esteves LC, Pinheiro AC, Pioli RM, et al. Revisiting the Mechanism of Hydrolysis of Betanin. Photochem Photobiol. 2018;94(5):853-864. doi:10.1111/php.12897
- C. Correra T, S. Fernandes A, M. Reginato M, et al. Probing the geometry reorganization from solution to gas-phase in putrescine derivatives by IRMPD,1H-NMR and theoretical calculations. Phys Chem Chem Phys. 2017;19(35):24330-24340. doi:10.1039/c7cp04617k
- Patrick AL, Cismesia AP, Tesler LF, Polfer NC. Effects of ESI conditions on kinetic trapping of the solution-phase protonation isomer of p-aminobenzoic acid in the gas phase. Int J Mass Spectrom. 418:148-155. doi:10.1016/j.ijms.2016.09.022