Development of a photoinduced fragmentation ion trap for infrared multiple photon dissociation spectroscopy (original) (raw)

Abstract

Rationale: Methods for isomer discrimination by mass spectroscopy are of increasing interest. Here we describe the development of a 3D ion trap for Infrared Multiple Photon Dissociation (IRMPD) spectroscopy that enables the acquisition of the infrared spectrum of selected ions in the gas phase. This system is suitable for the study of myriad chemical systems, including isomer mixtures. Methods: A modified 3D ion trap was coupled to a CO2 laser and an OPO/OPA system operating in the 2300 to 4000 cm-1 range. DFT vibrational frequency calculations were carried out to support spectral assignment. Results: Detailed descriptions of the interface between the laser and the mass spectrometer, the hardware to control the laser systems, the automated system for IRMPD spectrum acquisition and data This article is protected by copyright. All rights reserved. management are presented. The optimization of the crystal position of the OPO/OPA system to maximize the spectroscopic response under low power laser radiation is also discussed. Conclusions: OPO/OPA and CO2 laser-assisted dissociation of gas ions were successfully achieved. The system was validated by acquiring the IRMPD spectra of model species and comparing with literature data. Two isomeric alkaloids of high economic importance were characterized to demonstrate the potential of this technique, which is now available as an open IRMPD spectroscopy facility in Brazil.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (94)

  1. Herzberg G. Faraday Lecture: Spectra and structures of molecular ions. Q Rev Chem Soc. 1971;25:201-222. doi:10.1039/qr9712500201
  2. Dunbar RC. Photodissociation of trapped ions. Int J Mass Spectrom. 2000;200(1-3):571-589. doi:10.1016/S1387-3806(00)00368-7
  3. Dunn GH. Studies of photodissociation of molecular ions. At Collis Process. 1964;1:997-1005.
  4. Dunbar RC. Photodissociation of the CH3Cl+ and N2O+ Cations. J Am Chem Soc. 1971. doi:10.1021/ja00747a003
  5. Dunbar RC, Fu EW. Photodissociation spectroscopy of gaseous toluene (C7H8+) cations. J Am Chem Soc. 1973;95(8):2716-2718. doi:10.1021/ja00789a069
  6. Polfer NC, Dugourd P, eds. Lecture Notes In Chemistry 83 Laser Photodissociation and Spectroscopy of Mass-Separated Biomolecular Ions. Springer International Publishing; 2013. doi:10.1007/978-3-319-01252-0
  7. Brodbelt JS, Wilson JJ. Infrared multiphoton dissociation in quadrupole ion traps. Mass Spectrom Rev. 28(3):390-424. doi:10.1002/mas.20216
  8. Dunbar RC. In the beginning was H 2 + : Mass spectrometry and the molecular spectroscopy of gas-phase ions. Int J Mass Spectrom. 2015;377:159-171. doi:10.1016/j.ijms.2014.07.049
  9. Peiris DM, Riveros JM, Eyler JR. Infrared multiple photon dissociation spectra of methanol- attached anions and proton-bound dimer cations. Int J Mass Spectrom Ion Process. 1996;159(1- 3):169-183. doi:10.1016/S0168-1176(96)04449-7
  10. Peiris DM, Yang Y, Ramanathan R, Williams KR, Watson CH, Eyler JR. Infrared multiphoton dissociation of electrosprayed crown ether complexes. Int J Mass Spectrom Ion Process. 1996;157-158:365-378. doi:10.1016/S0168-1176(96)04462-X
  11. Shin SK, Beauchamp JL. Infrared Multiphoton Dissociation Spectrum of CF3Mn(CO)3(NO)-. J Am Chem Soc. 1990;112(6):2066-2069. doi:10.1021/ja00162a004
  12. Shin SK, Beauchamp JL. Identification of Mn(CO)nCF3-(n = 4, 5) Structural Isomers by IR Multiphoton Dissociation, Collision-Induced Dissociation, and Specific Ligand Displacement Reactions: Studies of the Trifluoromethyl Migratory Decarbonylation Reaction in the Gas Phase. J Am Chem Soc. 1990;112(6):2057-2066. doi:10.1021/ja00162a003
  13. Gäumann T, Riveros JM, Zhu Z. The Infrared Multiphoton-Dissociation Spectra of Bromopropene Isomeric Cations. Helv Chim Acta. 1990;73(5):1215-1218. doi:10.1002/hlca.19900730510
  14. Polfer NC. Infrared multiple photon dissociation spectroscopy of trapped ions. Chem Soc Rev. 2011;40(5):2211-2221. doi:10.1039/c0cs00171f
  15. Girod M, Biarc J, Enjalbert Q, et al. Implementing visible 473 nm photodissociation in a Q- Exactive mass spectrometer: towards specific detection of cysteine-containing peptides. Analyst. 2014;139(21):5523-5530. doi:10.1039/C4AN00956H
  16. Greisch J-F, Tamara S, Scheltema RA, et al. Expanding the mass range for UVPD-based native top-down mass spectrometry. Chem Sci. 2019;10(30):7163-7171. doi:10.1039/C9SC01857C
  17. Mehaffey MR, Schardon CL, Novelli ET, et al. Investigation of GTP-dependent dimerization of G12X K-Ras variants using ultraviolet photodissociation mass spectrometry. Chem Sci. 2019;10(34):8025-8034. doi:10.1039/C9SC01032G
  18. Pereverzev AY, Cheng X, Nagornova NS, Reese DL, Steele RP, Boyarkin O V. Vibrational Signatures of Conformer-Specific Intramolecular Interactions in Protonated Tryptophan. J Phys Chem A. 2016;120(28):5598-5608. doi:10.1021/acs.jpca.6b05605
  19. Roithova J. Characterization of reaction intermediates by ion spectroscopy. Chem Soc Rev. 2012;41(2):547-559. http://dx.doi.org/10.1039/C1CS15133A.
  20. Inokuchi Y, Ebata T, Rizzo TR. UV and IR Spectroscopy of Transition Metal-Crown Ether Complexes in the Gas Phase: Mn 2+ (benzo-15-crown-5)(H 2 O) 0-2. J Phys Chem A. 2019;123(31):6781-6786. doi:10.1021/acs.jpca.9b05706
  21. Leavitt CM, Wolk AB, Fournier JA, et al. Isomer-Specific IR-IR Double Resonance Spectroscopy of D2-Tagged Protonated Dipeptides Prepared in a Cryogenic Ion Trap. J Phys Chem Lett. 2012;3(9):1099-1105. doi:10.1021/jz3003074
  22. Scutelnic V, Rizzo TR. Cryogenic Ion Spectroscopy for Identification of Monosaccharide Anomers. J Phys Chem A. 2019;123(13):2815-2819. doi:10.1021/acs.jpca.9b00527
  23. Azargun M, Meister PJ, Gauld JW, Fridgen TD. The K 2 (9-ethylguanine) 12 2+ quadruplex is more stable to unimolecular dissociation than the K(9-ethylguanine) 8 + quadruplex in the gas phase: a BIRD, energy resolved SORI-CID, IRMPD spectroscopic, and computational study. Phys Chem Chem Phys. 2019;21(28):15319-15326. doi:10.1039/C9CP01651A
  24. Bayat P, Gatineau D, Lesage D, Marhabaie S, Martinez A, Cole RB. Investigation of activation energies for dissociation of host-guest complexes in the gas phase using low-energy collision induced dissociation. J Mass Spectrom. 2019;54(5):437-448. doi:10.1002/jms.4345
  25. Daly S, MacAleese L, Dugourd P, Chirot F. Combining Structural Probes in the Gas Phase -Ion Mobility-Resolved Action-FRET. J Am Soc Mass Spectrom. 2018;29(1):133-139. doi:10.1007/s13361-017-1824-7
  26. Kung JCK, Forman A, Jockusch RA. The effect of methylation on the intrinsic photophysical properties of simple rhodamines. Phys Chem Chem Phys. 2019;21(20):10261-10271. doi:10.1039/C9CP00730J
  27. Giuliani A, Milosavljevic A, Canon F, et al. Application of VUV synchrotron radiation to proteomic and analytical mass spectrometry. J Phys Conf Ser. 2013;425(12):122001. doi:10.1088/1742-6596/425/12/122001
  28. Milosavljević AR, Nicolas C, Gil J-FF, et al. VUV synchrotron radiation: A new activation technique for tandem mass spectrometry. J Synchrotron Radiat. 2012;19(2):174-178. doi:10.1107/S0909049512001057
  29. Rodríguez Pirani LS, Cánneva A, Geronés M, et al. Formation of HCO + and HCS + Ions in the Photodissociation of CH 3 OC(S)SCH 3 under VUV Synchrotron Radiation. J Phys Chem A. 2019;123(31):6674-6682. doi:10.1021/acs.jpca.9b03670
  30. Cannon JR, Holden DD, Brodbelt JS. Hybridizing Ultraviolet Photodissociation with Electron Transfer Dissociation for Intact Protein Characterization. doi:10.1021/ac5036082
  31. Warnke S, Baldauf C, Bowers MT, Pagel K, Von Helden G. Photodissociation of conformer- selected ubiquitin ions reveals site-specific cis / trans isomerization of proline peptide bonds. J Am Chem Soc. 2014;136(29). doi:10.1021/ja502994b
  32. Rodrigues-Oliveira AF, M. Ribeiro FW, Cervi G, C. Correra T. Evaluation of Common Theoretical Methods for Predicting Infrared Multiphotonic Dissociation Vibrational Spectra of Intramolecular Hydrogen-Bonded Ions. ACS Omega. 2018;3(8):9075-9085. doi:10.1021/acsomega.8b00815
  33. Katari M, Nicol E, Steinmetz V, van der Rest G, Carmichael D, Frison G. Improved Infrared Spectra Prediction by DFT from a New Experimental Database. Chem -A Eur J. 2017;23(35):8414-8423. doi:10.1002/chem.201700340
  34. Oomens J, Sartakov BG, Meijer G, von Helden G. Gas-phase infrared multiple photon dissociation spectroscopy of mass-selected molecular ions. Int J Mass Spectrom. 2006;254(1- 2):1-19. doi:10.1016/j.ijms.2006.05.009
  35. MacAleese L, Maître P. Infrared spectroscopy of organometallic ions in the gas phase: From model to real world complexes. Mass Spectrom Rev. 2007;26(4):583-605. doi:10.1002/mas.20138
  36. Asmis KR, Sauer J. Mass-selective vibrational spectroscopy of vanadium oxide cluster ions. Mass Spectrom Rev. 2007;26(4):542-562. doi:10.1002/mas.20136
  37. Fridgen TD. Infrared consequence spectroscopy of gaseous protonated and metal ion cationized complexes. Mass Spectrom Rev. 2009;28(4):586-607. doi:10.1002/mas.20224
  38. Polfer NC, Oomens J. Vibrational spectroscopy of bare and solvated ionic complexes of biological relevance. Mass Spectrom Rev. 2009;28(3):468-494. doi:10.1002/mas.20215
  39. Eyler JR. Infrared multiple photon dissociation spectroscopy of ions in Penning traps. Mass Spectrom Rev. 2009;28(3):448-467. doi:10.1002/mas.20217
  40. Jašíková L, Roithová J. Infrared Multiphoton Dissociation Spectroscopy with Free-Electron Lasers: On the Road from Small Molecules to Biomolecules. Chem -A Eur J. 2018;24(14):3374- 3390. doi:10.1002/chem.201705692
  41. Fraschetti C, Guarcini L, Speranza M, Filippi A. Intramolecular n-type proton/hydrogen network in basic structures of vitamin B6 investigated by IRMPD spectroscopy. Int J Mass Spectrom. 2019;438:148-156. doi:10.1016/J.IJMS.2019.01.006
  42. Cruz-Ortiz AF, Rossa M, Berthias F, Berdakin M, Maitre P, Pino GA. Fingerprints of Both Watson-Crick and Hoogsteen Isomers of the Isolated (Cytosine-Guanine)
  43. H + Pair. J Phys Chem Lett. 2017;8(22):5501-5506. doi:10.1021/acs.jpclett.7b02140
  44. Li J, Maître P, Song D-QD-Q, et al. Differentiation of Cefaclor and its delta-3 isomer by electrospray mass spectrometry, infrared multiple photon dissociation spectroscopy and theoretical calculations. J Mass Spectrom. 2015;50(1):265-269. doi:10.1002/jms.3510
  45. Masson MAC, Karpfenstein R, de Oliveira-Silva D, et al. Evaluation of Ca2+ Binding Sites in Tacrolimus by Infrared Multiple Photon Dissociation Spectroscopy. J Phys Chem B. 2018;122(43):9860-9868. doi:10.1021/acs.jpcb.8b06523
  46. Corinti D, De Petris A, Coletti C, et al. Cisplatin Primary Complex with l -Histidine Target Revealed by IR Multiple Photon Dissociation (IRMPD) Spectroscopy. ChemPhysChem. 2017;18(3):318-325. doi:10.1002/cphc.201601172
  47. Gorlova O, Colvin SM, Brathwaite A, et al. Identification and Partial Structural Characterization of Mass Isolated Valsartan and Its Metabolite with Messenger Tagging Vibrational Spectroscopy. J Am Soc Mass Spectrom. 2017;28(11):2414-2422. doi:10.1007/s13361-017- 1767-z
  48. Martens J, Berden G, van Outersterp RE, et al. Molecular identification in metabolomics using infrared ion spectroscopy. Sci Rep. 2017;7(1):3363. doi:10.1038/s41598-017-03387-4
  49. Martens J, Berden G, Bentlage H, et al. Unraveling the unknown areas of the human metabolome: the role of infrared ion spectroscopy. J Inherit Metab Dis. 2018;41(3):367-377. doi:10.1007/s10545-018-0161-8
  50. van Outersterp RE, Houthuijs KJ, Berden G, et al. Reference-standard free metabolite identification using infrared ion spectroscopy. Int J Mass Spectrom. 2019;443:77-85. doi:10.1016/j.ijms.2019.05.015
  51. Pahl M, Mayer M, Schneider M, Belder D, Asmis KR. Joining Microfluidics with Infrared Photodissociation: Online Monitoring of Isomeric Flow-Reaction Intermediates. Anal Chem. 2019;91(5):3199-3203. doi:10.1021/acs.analchem.8b05532
  52. Santos Fernandes A, Maître P, Carita Correra T. Evaluation of the Katsuki-Sharpless Epoxidation Precatalysts by ESI-FTMS, CID, and IRMPD Spectroscopy. J Phys Chem A. 2019;123(5):1022-1029. doi:10.1021/acs.jpca.8b09979
  53. M. Ribeiro FW, Rodrigues-Oliveira AF, C. Correra T. Benzoxazine Formation Mechanism Evaluation by Direct Observation of Reaction Intermediates. J Phys Chem A. 2019. doi:10.1021/acs.jpca.9b05065
  54. Tripodi GL, Correra TC, Angolini CFF, et al. The Intermediates in Lewis Acid Catalysis with Lanthanide Triflates. European J Org Chem. 2019;2019(22):3560-3566. doi:10.1002/ejoc.201900171
  55. Wheeler OW, Salem M, Gao A, Bakker JM, Armentrout PB. Sequential activation of methane by Ir+: An IRMPD and theoretical investigation. Int J Mass Spectrom. 2019;435:78-92. doi:10.1016/j.ijms.2018.10.007
  56. Armentrout PB, Heaton AL, Ye SJ. Thermodynamics and Mechanisms for Decomposition of Protonated Glycine and Its Protonated Dimer. J Phys Chem A. 2011;115(41):11144-11155. doi:10.1021/jp2025939
  57. Boles GC, Kempkes LJM, Martens J, Berden G, Oomens J, Armentrout PB. Ion spectroscopy and guided ion beam studies of protonated asparaginyl-threonine decomposition: Influence of a hydroxyl containing C-Terminal residue on deamidation processes. Int J Mass Spectrom. 2019;442:64-82. doi:10.1016/j.ijms.2019.05.010
  58. Donald WA, Leib RD, Demireva M, O'Brien JT, Prell JS, Williams ER. Directly Relating Reduction Energies of Gaseous Eu(H2O)n3+, n = 55-140, to Aqueous Solution: The Absolute SHE Potential and Real Proton Solvation Energy. J Am Chem Soc. 2009;131(37):13328-13337. doi:doi: 10.1021/ja902815v
  59. Donald WA, Leib RD, O'Brien JT, Bush MF, Williams ER. Absolute Standard Hydrogen Electrode Potential Measured by Reduction of Aqueous Nanodrops in the Gas Phase. J Am Chem Soc. 2008;130(11):3371-3381. doi:10.1021/ja073946i
  60. Steill JD, Oomens J. Gas-phase deprotonation of p-hydroxybenzoic acid investigated by IR spectroscopy: Solution-phase structure is retained upon ESI. J Am Chem Soc. 2009;131(38):13570-13571. doi:10.1021/ja903877v
  61. Walhout EQ, Dorn SE, Martens J, et al. Infrared Ion Spectroscopy of Environmental Organic Mixtures: Probing the Composition of α-Pinene Secondary Organic Aerosol. Environ Sci Technol. 2019;53(13):7604-7612. doi:10.1021/acs.est.9b02077
  62. Poitzsch ME, Bergquist JC, Itano WM, Wineland DJ. Cryogenic linear ion trap for accurate spectroscopy. Rev Sci Instrum. 1996;67(1):129-134. http://dx.doi.org/10.1063/1.1146560.
  63. Wolk AB, Leavitt CM, Garand E, Johnson MA. Cryogenic ion chemistry and spectroscopy. Acc Chem Res. 2014;47(1):202-210. doi:10.1021/ar400125a
  64. Cismesia AP, Bailey LS, Bell MR, Tesler LF, Polfer NC. Making Mass Spectrometry See the Light: The Promises and Challenges of Cryogenic Infrared Ion Spectroscopy as a Bioanalytical Technique. J Am Soc Mass Spectrom. 2016;27(5):757-766. doi:10.1007/s13361-016-1366-4
  65. Oomens J, Berden G, Morton TH. Low-Frequency CH Stretch Vibrations of Free Alkoxide Ions. Angew Chemie Int Ed. 2017;56(1):217-220. doi:10.1002/anie.201609437
  66. Murdin BN. Far-infrared free-electron lasers and their applications. Contemp Phys. 2011;50(2):391-406. doi:doi: 10.1080/00107510902733856
  67. Prazeres R, Berset JM, Glotin F, Jaroszynski D, Ortega JM. Optical performance of the CLIO infrared FEL. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip. 1993;331(1):15-19. doi:http://dx.doi.org/10.1016/0168-9002(93)90006-4
  68. van Amersfoort PW, Bakker RJ, Bekkers JB, et al. First lasing with FELIX. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip. 1992;318(1-3):42-46. doi:http://dx.doi.org/10.1016/0168-9002(92)91021-Z
  69. Schöllkopf W, Gewinner S, Junkes H, et al. The new IR and THz FEL facility at the Fritz Haber Institute in Berlin. In: Biedron SG, ed. ; 2015:95121L. doi:10.1117/12.2182284
  70. Seo J, Hoffmann W, Warnke S, et al. An infrared spectroscopy approach to follow β-sheet formation in peptide amyloid assemblies. Nat Chem. 2017;9(1):39-44. doi:10.1038/nchem.2615
  71. Schliemann W, Kobayashi N, Strack D. The Decisive Step in Betaxanthin Biosynthesis Is a Spontaneous Reaction 1. Plant Physiol. 1999;119(4):1217-1232. doi:10.1104/pp.119.4.1217
  72. Schliemann W, Steiner U, Strack D. Betanidin formation from dihydroxyphenylalanine in a model assay system. Phytochemistry. 1998;49(6):1593-1598. doi:10.1016/S0031- 9422(98)00276-3
  73. Prell JS, O'Brien JT, Williams ER. IRPD spectroscopy and ensemble measurements: Effects of different data acquisition and analysis methods. J Am Soc Mass Spectrom. 2010;21(5):800-809. doi:10.1016/j.jasms.2010.01.010
  74. Origin(Pro), Version 9.0.0. OriginLab Corporation, Northampton, MA, USA.
  75. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenb DJ. Gaussian 09, Revision A.02.
  76. Shao Y, Molnar LF, Jung Y, et al. Advances in methods and algorithms in a modern quantum chemistry program package. Phys Chem Chem Phys. 2006;8(27):3172-3191. doi:10.1039/B517914A
  77. Russell D. Johnson III, Johnson III RD. NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101 Release 14.; 2006. http://srdata.nist.gov/cccbdb.
  78. Dang A, Korn JA, Gladden J, Mozzone B, Tureček F. UV-Vis Photodissociation Action Spectroscopy on Thermo LTQ-XL ETD and Bruker amaZon Ion Trap Mass Spectrometers: a Practical Guide. J Am Soc Mass Spectrom. 2019;30(9):1558-1564. doi:10.1007/s13361-019- 02229-z
  79. Hamlow LA, Zhu Y, Devereaux ZJ, et al. Modified Quadrupole Ion Trap Mass Spectrometer for Infrared Ion Spectroscopy: Application to Protonated Thiated Uridines. J Am Soc Mass Spectrom. 2018;29(11):2125-2137. doi:10.1007/s13361-018-2047-2
  80. Martens J, Berden G, Gebhardt CR, Oomens J. Infrared ion spectroscopy in a modified quadrupole ion trap mass spectrometer at the FELIX free electron laser laboratory. Rev Sci Instrum. 2016;87(10):103108. doi:10.1063/1.4964703
  81. Nosenko Y, Menges F, Riehn C, Niedner-Schatteburg G. Investigation by two-color IR dissociation spectroscopy of Hoogsteen-type binding in a metalated nucleobase pair mimic. Phys Chem Chem Phys. 2013;15(21):8171. doi:10.1039/c3cp44283g
  82. Scuderi D, Bakker JM, Durand S, et al. Structure of singly hydrated, protonated phospho- tyrosine. Int J Mass Spectrom. 2011;308(2-3):338-347. doi:10.1016/j.ijms.2011.08.031
  83. Altinay G, Metz RB. Comparison of IRMPD, Ar-tagging and IRLAPS for vibrational spectroscopy of Ag+(CH3OH). Spec Issue Ion Spectrosc. 2010;297(1-3):41-45. doi:10.1016/j.ijms.2010.05.016
  84. Gardner MW, Smith SI, Ledvina AR, et al. Infrared Multiphoton Dissociation of Peptide Cations in a Dual Pressure Linear Ion Trap Mass Spectrometer. Anal Chem. 2009;81(19):8109-8118. doi:10.1021/ac901313m
  85. Remes PM, Glish GL. Mapping the Distribution of Ion Positions as a Function of Quadrupole Ion Trap Mass Spectrometer Operating Parameters to Optimize Infrared Multiphoton Dissociation. J Phys Chem A. 2009;113(15):3447-3454. doi:10.1021/jp808955w
  86. Rodrigues ACB, Mariz IDA, Macoas EMS, et al. Bioinspired water-soluble two-photon fluorophores. Dye Pigment. 2018;150:105-111. doi:10.1016/j.dyepig.2017.11.020
  87. Nakashima KK, Bastos EL. Rationale on the high radical scavenging capacity of betalains. Antioxidants. 2019;8(7):222. doi:10.3390/antiox8070222
  88. Pavliuk M V, Fernandes AB, Abdellah M, et al. Nano-hybrid plasmonic photocatalyst for hydrogen production at 20% efficiency. Sci Rep. 2017;7(1):8670. doi:10.1038/s41598-017- 09261-7
  89. Pavliuk M V, Cieslak AM, Abdellah M, et al. Hydrogen evolution with nanoengineered ZnO interfaces decorated using a beetroot extract and a hydrogenase mimic. Sustain Energy Fuels. 2017;1(1):69-73. doi:10.1039/C6SE00066E
  90. Quina FH, Bastos EL. Chemistry Inspired by the Colors of Fruits, Flowers and Wine. An Acad Bras Cienc. 2018;90(1 Suppl 1):681-695. doi:10.1590/0001-3765201820170492
  91. Polturak G, Aharoni A. "La Vie en Rose": Biosynthesis, Sources, and Applications of Betalain Pigments. Mol Plant. 2018;11(1):7-22. doi:10.1016/j.molp.2017.10.008
  92. Esteves LC, Pinheiro AC, Pioli RM, et al. Revisiting the Mechanism of Hydrolysis of Betanin. Photochem Photobiol. 2018;94(5):853-864. doi:10.1111/php.12897
  93. C. Correra T, S. Fernandes A, M. Reginato M, et al. Probing the geometry reorganization from solution to gas-phase in putrescine derivatives by IRMPD,1H-NMR and theoretical calculations. Phys Chem Chem Phys. 2017;19(35):24330-24340. doi:10.1039/c7cp04617k
  94. Patrick AL, Cismesia AP, Tesler LF, Polfer NC. Effects of ESI conditions on kinetic trapping of the solution-phase protonation isomer of p-aminobenzoic acid in the gas phase. Int J Mass Spectrom. 418:148-155. doi:10.1016/j.ijms.2016.09.022