Cell cycle phase influences tumour cell sensitivity to aminolaevulinic acid-induced photodynamic therapy in vitro (original) (raw)

1998, British Journal of Cancer

Sl0 2JF. UK. 2lnstitute for Cancer Studies, Sheffield University. Sheffield S10 2JF, UK Summary Photodynamic therapy (PDT) is a form of cancer treatment based on the destruction of cells by the interaction of light, oxygen and a photosensitizer. Aminolaevulinic acid (ALA) is the prodrug of the photosensitizer protoporphyrin IX (PpIX). ALA-induced PDT depends on the rate of cellular synthesis of PpIX, which may vary with cell cycle phase. This study has investigated the relationship between cell cycle phase, PpIX generation and phototoxicity in synchronized and unsynchronized bladder cancer cells (HT1197). In unsynchronized cells, relative PpIX fluorescence values (arbitrary units) were significantly different between cell cycle phases after a 1-h ALA incubation (G, 24.8 ± 0.7; S-phase, 32.7 ± 0.8, P < 0.05; G2 35.4 ± 0.8, P < 0.05). In synchronized cells after a 1-h ALA incubation, cells in G, produced less PpIX than those in S-phase or G2 [6.65 ± 1.1 ng per 10 cells compared with 15.5 ± 2.1 (P < 0.05), and 8.1 ± 1.8 ng per 105 cells (not significant) respectively] and were significantty less sensitive to ALA-induced PDT (% survival, G, 76.2 ± 8.3; S-phase 49.7 ± 4.6, P < 0.05; G2 44.2 ± 2.4, P < 0.05). This differential response in tumour cells may have implications for clinical PDT, resulting in treatment resistance and possible failure in complete tumour response.