Transcriptional Regulation of the Bovine Leukemia Virus Promoter by the Cyclic AMP-response Element Modulator Isoform (original) (raw)
Related papers
1992
To gain insight into the cellular regulation of bovine leukemia virus (BLV) trans activation, a lambda-gtll cDNA library was constructed with mRNA isolated from a BLV-induced tumor and the recombinant proteins were screened with an oligonucleotide corresponding to the tax activation-responsive element (TAR). Two clones (called TAR-binding protein) were isolated from 750,000 lambda-gtll plaques. The binding specificity was confirmed by Southwestern (DNA-protein) and gel retardation assays. Nucleotide sequence analysis revealed that TAR-binding protein is very similar to the CREB2 protein. It contains a leucine zipper structure required for dimerization, a basic amino acid domain, and multiple potential phosphorylation sites. A vector expressing CREB2 was transfected into D17 osteosarcoma cells. In the absence of the tax transactivator, the CREB2 protein and the cyclic AMP-dependent protein kinase A activate the BLV long terminal repeat at a basal expression level: trans activation reached 10% of the values obtained in the presence of tax alone. These data demonstrate that CREB2 is a cellular factor able to induce BLV long terminal repeat expression in the absence of tax protein and could thus be involved in the early stages of viral infection. In addition, we observed that in vitro tax-induced trans activation can be activated or inhibited by CREB2 depending on the presence or absence of protein kinase A. These data suggest that the cyclic AMP pathway plays a role in the regulation of viral expression in BLV-infected animals.
Journal of Biological Chemistry, 2004
Efficient bovine leukemia virus (BLV) transcription requires the virus-encoded transactivator Tax BLV , which acts through three Tax BLV-responsive elements located in the 5 long terminal repeat. It has been proposed that the binding of the CRE-binding protein (CREB) and the activating transcription factor (ATF) to the three imperfect cAMP-responsive elements (CREs) located in each Tax BLV-responsive element mediates Tax BLV transactivation. Here we demonstrated that deacetylase inhibitors (HDACis) synergistically enhanced the transcriptional activation of the BLV promoter by Tax BLV in a CRE-dependent manner. Tax BLV was acetylated in vivo at its N ␣ terminus but not at internal lysine residues. Rather, HDACi potentiation of Tax BLV transactivation was mediated by an HDACi indirect action that requires new protein synthesis. Mechanistically, using a dominant-negative form of CREB, we showed that Tax BLV and HDACi synergistically activated BLV gene expression via a CREB-dependent mechanism. Moreover, electrophoretic mobility shift assay and Western blot experiments revealed that HDACi increased the in vitro DNA binding activity of CREB/ ATF but did not alter CREB/ATF intranuclear presence. Remarkably, chromatin immunoprecipitation assays demonstrated that HDACi treatment increased the level of CREB bound to the BLV promoter in vivo. Our results together suggest that an increase in CREB/ATF occupancy of the viral CREs in response to HDACi potentiates Tax BLV transactivation of the BLV promoter.
Journal of virology, 1998
The Tax protein of the human T-cell leukemia virus type 1 (HTLV-1) has been implicated in human T-cell immortalization. The primary function of Tax is to transcriptionally activate the HTLV-1 promoter, but Tax is also known to stimulate expression of cellular genes. It has been reported to associate with several transcription factors, as well as proteins not involved in transcription. To better characterize potential cellular targets of Tax present in infected cells, a Saccharomyces cerevisiae two-hybrid screening was performed with a cDNA library constructed from the HTLV-1-infected MT2 cell line. From this study, we found 158 positive clones representing seven different cDNAs. We focused our attention on the cDNA encoding the transcription factor CREB-2. CREB-2 is an unconventional member of the ATF/CREB family in that it lacks a protein kinase A (PKA) phosphorylation site and has been reported to negatively regulate transcription from the cyclic AMP response element of the human ...
Molecular and Cellular Biology, 2000
The human T-cell leukemia virus type 1 (HTLV-1) Tax protein activates viral transcription through three 21-bp repeats located in the U3 region of the HTLV-1 long terminal repeat and called Tax-responsive elements (TxREs). Each TxRE contains nucleotide sequences corresponding to imperfect cyclic AMP response elements (CRE). In this study, we demonstrate that the bZIP transcriptional factor CREB-2 is able to bind in vitro to the TxREs and that CREB-2 binding to each of the 21-bp motifs is enhanced by Tax. We also demonstrate that Tax can weakly interact with CREB-2 bound to a cellular palindromic CRE motif such as that found in the somatostatin promoter. Mutagenesis of Tax and CREB-2 demonstrates that both N-and C-terminal domains of Tax and the C-terminal region of CREB-2 are required for direct interaction between the two proteins. In addition, the Tax mutant M47, defective for HTLV-1 activation, is unable to form in vitro a ternary complex with CREB-2 and TxRE. In agreement with recent results suggesting that Tax can recruit the coactivator CREB-binding protein (CBP) on the HTLV-1 promoter, we provide evidence that Tax, CREB-2, and CBP are capable of cooperating to stimulate viral transcription. Taken together, our data highlight the major role played by CREB-2 in Tax-mediated transactivation.
Journal of Biological …, 1998
Tax-1, the transcriptional activation protein of human T-cell leukemia virus-1, increases transcription from the human T-cell leukemia virus-1 long terminal repeat and specific cellular promoters through interactions with cellular DNA-binding proteins. The Tax response elements (TxREs) of the long terminal repeat resemble cAMP response elements (CREs), the target of cAMPresponsive element-binding protein (CREB). CREB binds the TxRE with reduced affinity; however, the interaction is specifically enhanced by Tax. Using a fluorescence quenching method, we determined that CREB dimerizes in the absence of DNA, and that Tax does not enhance dimerization. DNA footprinting of the TxRE with 1,10-phenanthroline-copper complex demonstrates that Tax contacts DNA and extends the footprint of CREB to GC-rich sequences flanking the core CRE-like element. The minor groove-binding drug chromomycin A 3 , but not distamycin A, disrupted Tax-enhanced CREB binding to the TxRE. Substitution of the guanine-rich sequences flanking the core of the TxRE with inosine residues also blocked the Tax effect. Finally, the ICsubstituted TxRE binds CREB with increased affinity, suggesting flanking DNA influences the binding of CREB to the core CRE-like element. These data indicate that Tax does not regulate DNA binding of CREB by altering dimerization, but rather enhances DNA binding by additionally interacting with the minor groove of flanking DNA sequences.
Journal of Virology, 2007
The complex human T-cell leukemia virus type 1 (HTLV-1) retrovirus encodes several proteins that are unique to the virus within its 3-end region. Among them, the viral transactivator Tax and posttranscriptional regulator Rex are well characterized, and both positively regulate HTLV-1 viral expression. Less is known about the other regulatory proteins encoded in this region of the provirus, including the recently discovered HBZ protein. HBZ has been shown to negatively regulate basal and Tax-dependent HTLV-1 transcription through its ability to interact with specific basic-leucine zipper (bZIP) proteins. In the present study, we found that HBZ reduces HTLV-1 transcription and virion production. We then characterized the interaction between HBZ and the cellular transcription factor CREB. CREB plays a critical role in Tax-mediated HTLV-1 transcription by forming a complex with Tax that binds to viral cyclic AMP-response elements (CREs) located within the viral promoter. We found that HBZ and CREB interact in vivo and directly in vitro, and this interaction occurs through the bZIP domain of each protein. We also found that CREM-Ia and ATF-1, which share significant homology in their bZIP domains with the bZIP domain of CREB, interact with HBZ-bZIP. The interaction between CREB and HBZ prevents CREB binding to the viral CRE elements in vitro and in vivo, suggesting that the reduction in HTLV-1 transcription by HBZ is partly due to the loss of CREB at the promoter. We also found that HBZ displaces CREB from a cellular CRE, suggesting that HBZ may deregulate CREB-dependent cellular gene expression.
Molecular and cellular biology, 1998
Efficient human T-cell leukemia virus type 1 (HTLV-1) replication and viral gene expression are dependent upon the virally encoded oncoprotein Tax. To activate HTLV-1 transcription, Tax interacts with the cellular DNA binding protein cyclic AMP-responsive element binding protein (CREB) and recruits the coactivator CREB binding protein (CBP), forming a nucleoprotein complex on the three viral cyclic AMP-responsive elements (CREs) in the HTLV-1 promoter. Short stretches of dG-dC-rich (GC-rich) DNA, immediately flanking each of the viral CREs, are essential for Tax recruitment of CBP in vitro and Tax transactivation in vivo. Although the importance of the viral CRE-flanking sequences is well established, several studies have failed to identify an interaction between Tax and the DNA. The mechanistic role of the viral CRE-flanking sequences has therefore remained enigmatic. In this study, we used high resolution methidiumpropyl-EDTA iron(II) footprinting to show that Tax extended the CRE...
Journal of Virology, 2000
Human T-lymphotropic virus type 1 (HTLV-1), a complex retrovirus, causes adult T-cell lymphoma/leukemia and is linked to a variety of immune-mediated disorders. The roles of proteins encoded in the pX open reading frame (ORF) II gene region in HTLV-1 replication or in mediating virus-associated diseases remain to be defined. A nucleus-localizing 30-kDa protein, p30 II , encoded within pX ORF II has limited homology with the POU family of transcription factors. Recently, we reported that selected mutations in pX ORF II diminish the ability of HTLV-1 to maintain high viral loads in infected rabbits. Herein we have tested the transcriptional ability of p30 II in mammalian cells by using yeast Gal4 fusion protein vectors and transfection of luciferase reporter genes driven by CREB-responsive promoters. p30 II as a Gal4 DNA-binding domain (DBD) fusion protein transactivates Gal4-driven luciferase reporter gene activity up to 25-fold in 293 and HeLa-tat cells. We confirmed nuclear localization of p30 II and demonstrate dose-dependent binding of p30 II -Gal4(DBD) to Gal4 DNA-binding sites. The transcriptional activity of p30 II -Gal4(DBD) was independent of TATA box flanking sequences, as shown by using two different Gal4 reporter systems. Studies of selected p30 II mutants indicated that domains that mediate transcription are restricted to a central core region of the protein between amino acids 62 and 220. Transfection of a p30 II -expressing plasmid repressed cellular CRE-driven reporter gene activity, with or without Tax expression. In contrast, p30 II at lower concentrations enhanced HTLV-1 long terminal repeat-driven reporter gene activity independent of Tax expression. These data are the first to demonstrate a transcriptional function for p30 II and suggest a mechanism by which this nuclear protein may influence HTLV-1 replication or cellular gene expression in vivo.