Cellulose fibrils formation and organisation of cytoskeleton during encystment are essential for Acanthamoeba cyst wall architecture (original) (raw)

Abstract

Acanthamoebae success as human pathogens is largely due to the highly resistant cysts which represent a crucial problem in treatment of Acanthamoeba infections. Hence, the study of cyst wall composition and encystment play an important role in finding new therapeutic strategies. For the first time, we detected high activity of cytoskeletal elements-microtubular networks and filamentous actin, in late phases of encystment. Cellulose fibrils-the main components of endocyst were demonstrated in inter-cystic space, and finally in the ectocyst, hereby proving the presence of cellulose in both layers of the cyst wall. We detected clustering of intramembranous particles (IMPs) and their density alterations in cytoplasmic membrane during encystment. We propose a hypothesis that in the phase of endocyst formation, the IMP clusters represent cellulose microfibril terminal complexes involved in cellulose synthesis that after cyst wall completion are reduced. Cyst wall impermeability, due largely to a complex polysaccharide (glycans, mainly cellulose) has been shown to be responsible for Acanthamoeba biocide resistance and cellulose biosynthesis pathway is suggested to be a potential target in treatment of Acanthamoeba infections. Disruption of this pathway would affect the synthesis of cyst wall and reduce considerably the resistance to chemotherapeutic agents. Species of free-living amoebae genus Acanthamoeba Volkonsky, 1931 are opportunistic unicellular parasites with worldwide distribution in diverse environments including freshwater, soil, man-made habitats and even clinical settings 1-4. Pathogenic strains are causative agents of usually fatal chronic granulomatous amoebic encephalitis (GAE) and disseminating diseases in immunodeficient individuals and Acanthamoeba keratitis (AK), a painful progressive eye disease in immunocompetent individuals. The constantly rising number of cases of amoebic keratitis is connected with the increasing use of contact lenses and improving awareness 5. To date, not any standard and reliable therapeutic procedures of Acanthamoeba infections have been developed. The treatment of GAE and disseminated infections is limited and only rarely successful 6,7. AK is treated with a series of drugs with various and inconsistent effects, easily manageable treatment is still not available 8,9. The life cycle of Acanthamoeba spp. comprises two stages: an active trophozoite and a dormant, metabolically almost inactive cyst. Trophozoite is a motile stage typical with hyaline spiny subpseudopodia-acanthopodia, produced on the leading pseudopodium and on the entire cell surface 10,11. In unfavourable environmental conditions or in tissues during persistent infections trophozoites encyst 12-14. Cyst stage is typical with a conspicuous double-layered cyst wall, consisting of ectocyst, composed mostly of proteins and polysaccharides, and endocyst, composed mostly of cellulose 15,16. Except for cyst pores (ostioles), these layers are separated by an inter-cystic

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (82)

  1. Marciano-Cabral, F. & Cabral, G. A. Acanthamoeba spp. as agents of disease in humans. Clin. Microbiol. Rev. 16, 273-307 (2003).
  2. Lorenzo-Morales, J. et al. Acanthamoeba isolates belonging to T1, T2, T3, T4 and T7 genotypes from environmental freshwater samples in the Nile Delta region, Egypt. Acta Trop. 100, 63-69 (2006).
  3. Dendana, F. et al. Free-living amoebae (FLA): detection, morphological and molecular identification of Acanthamoeba genus in the hydraulic system of an haemodialysis unit in Tunisia. Parasite 15, 137-142 (2008).
  4. Shoff, M. E., Rogerson, K., Kessler, K., Schatz, S. & Seal, D. V. Prevalence of Acanthamoeba and other naked amoebae in south Florida domestic water. J. Water Health 6, 99-104 (2008).
  5. Walochnik, J., Scheikl, U. & Haller-Schober, E. Twenty years of Acanthamoeba diagnostics in Austria. J. Eukaryot. Microbiol. 62, 3-11 (2015).
  6. Aichelburg, A. C. et al. Successful treatment of disseminated Acanthamoeba sp. infection with miltefosine. Emerg. Infect. Dis. 14, 1743-1746 (2008).
  7. Webster, D. et al. Case report: Treatment of granulomatous amoebic encephalitis with voriconazole and miltefosine in an immunocompetent soldier. Am. J. Trop. Med. Hyg. 87, 715-718 (2012).
  8. Siddiqui, R., Aqeel, Y. & Khan, N. A. Killing the dead: Chemotherapeutic strategies against free-living cyst-forming protists (Acanthamoeba sp. and Balamuthia mandrillaris). J. Eukaryot. Microbiol. 60, 291-297 (2013).
  9. Lorenzo-Morales, J., Khan, N. A. & Walochnik, J. An update on Acanthamoeba keratitis: diagnosis, pathogenesis and treatment. Parasite 22, 10, https://doi.org/10.1051/parasite/2015010 (2015).
  10. Bowers, B. & Korn, E. D. The fine structure of Acanthamoeba castellanii. I. The trophozoite. J. Cell Biol. 39, 95-111 (1968).
  11. Page, F. C. Nackte Rhizopoda in Nackte Rhizopoda und Heliozoea (eds Page, F. C. & Siemensma, F. J.) 1-170 (G. Fischer, 1991).
  12. Köhsler, M. et al. Acanthamoeba strains lose their abilities to encyst synchronously upon prolonged axenic culture. Parasitol. Res. 102, 1069-1072 (2008).
  13. Kliescikova, J., Kulda, J. & Nohynkova, E. Stress-induced pseudocyst formation -a newly identified mechanism of protection against organic solvents in acanthamoebae of the T4 genotype. Protist 162, 58-69 (2011).
  14. Lloyd, D. Encystment in Acanthamoeba castellanii: a review. Exp. Parasitol. 145, S20-S27 (2014).
  15. Tomlinson, G. & Jones, E. A. Isolation of cellulose from the cyst wall of a soil amoeba. Biochim. Biophys. Acta 63, 194-200 (1962).
  16. Chávez-Munguía, B. et al. Ultrastructural study of encystation and excystation in Acanthamoeba castellanii. J. Eukaryot. Microbiol. 52, 153-158 (2005).
  17. Bowers, B. & Korn, E. D. The fine structure of Acanthamoeba castellanii (Neff Strain) II. Encystment. J. Cell Biol. 41, 786-805 (1969).
  18. Lemgruber, L., Lupetti, P., De Souza, W., Vommaro, R. C. & da Rocha-Azevedo, B. The fine structure of the Acanthamoeba polyphaga cyst wall. FEMS Microbiol. Lett. 305, 170-176 (2010).
  19. Chávez-Munguía, B. et al. Acanthamoeba castellanii cysts: new ultrastructural findings. Parasitol. Res. 112, 1125-1130 (2013).
  20. Pussard, M. & Pons, R. Morphologie de la paroi kystique et taxonomie du genre Acanthamoeba (Protozoa, Amoebida). Protistologica 13, 557-598 (1977).
  21. Köhsler, M., Mrva, M. & Walochnik, J. Acanthamoeba in Molecular Parasitology. Protozoan parasites and their molecules (eds Walochnik, J. & Duchêne, M.) 285-324 (Springer-Verlag, 2016).
  22. Tice, A. K. et al. Expansion of the molecular and morphological diversity of Acanthamoebidae (Centramoebida, Amoebozoa) and identification of a novel life cycle type within the group. Biol. Direct 11, 69, https://doi.org/10.1186/s13062-016-0171-0 (2016).
  23. Corsaro, D. et al. Update on Acanthamoeba jacobsi genotype T15, including full-length 18S rDNA molecular phylogeny. Parasitol. Res. 116, 1273-1284 (2017).
  24. Fuerst, P. A., Booton, G. C. & Crary, M. Phylogenetic analysis and the evolution of the 18S rRNA gene typing system of Acanthamoeba. J. Eukaryot. Microbiol. 62, 69-84 (2015).
  25. Chávez-Munguía, B. et al. Ultrastructure of cyst differentiation in parasitic protozoa. Parasitol. Res. 100, 1169-1175 (2007).
  26. Lasman, M. Light and electron microscopic observations on encystment of Acanthamoeba palestinensis, Reich. J. Protozool. 24, 244-248 (1977).
  27. Lasman, M. The fine structure of Acanthamoeba astronyxis, with special emphasis on encystment. J. Protozool. 29, 458-464 (1982).
  28. Bauer, H. Ultrastruktur und Zellwandbildung von Acanthamoeba sp. Vierteljahrsschr. Naturforsch. Ges. Zürich 112, 173-197 (1967).
  29. Spies, F. et al. Encystment of Acanthamoeba castellanii (Neff). A combined freeze etch -thin sectioning analysis of the cell surface. Cytobiologie 11, 50-64 (1975).
  30. Yonemura, S. & Pollard, T. D. The localization of myosin I and myosin II in Acanthamoeba by fluorescence microscopy. J. Cell Sci. 102, 629-642 (1992).
  31. González-Robles, A. et al. Acanthamoeba castellanii: Identification and distribution of actin cytoskeleton. Exp. Parasitol. 119, 411-417 (2008).
  32. Pollard, T. D. The role of actin in the temperature-dependent gelation and contraction of extracts of Acanthamoeba. J. Cell Biol. 68, 579-601 (1976).
  33. Machesky, L. M., Atkinson, S. J., Ampe, C., Vandekerckhove, J. & Pollard, T. D. Purification of a cortical complex containing two unconventional actins from Acanthamoeba by affinity chromatography on profilin-agarose. J. Cell Biol. 127, 107-115 (1994).
  34. Baumann, O. & Murphy, D. B. Microtubule-associated movement of mitochondria and small particles in Acanthamoeba castellanii. Cell Motil. Cytoskeleton 32, 305-317 (1995).
  35. Kelleher, J. F., Atkinson, S. J. & Pollard, T. D. Sequences, structural models, and cellular localization of the actin-related proteins Arp2 and Arp3 from Acanthamoeba. J. Cell Biol. 131, 385-397 (1995).
  36. Jontes, J. D., Ostap, E. M., Pollard, T. D. & Milligan, R. A. Three-dimensional structure of Acanthamoeba castellanii myosin-IB (MIB) determined by cryoelectron microscopy of decorated actin filaments. J. Cell Biol. 141, 155-162 (1998).
  37. Dudley, R., Jarroll, E. L. & Khan, N. A. Carbohydrate analysis of Acanthamoeba castellanii. Exp. Parasitol. 122, 338-343 (2009).
  38. Bouyer, S., Rodier, M. H., Guillot, A. & Héchard, Y. Acanthamoeba castellanii: Proteins involved in actin dynamics, glycolysis, and proteolysis are regulated during encystation. Exp. Parasitol. 123, 90-94 (2009).
  39. Khunkitti, W., Lloyd, D., Furr, J. R. & Russell, A. D. The lethal effects of biguanides on cysts and trophozoites of Acanthamoeba castellanii. J. Appl. Bacteriol. 81, 73-77 (1996).
  40. Khunkitti, W., Lloyd, D., Furr, J. R. & Russell, A. D. Aspects of the mechanisms of action of biguanides on trophozoites and cysts of Acanthamoeba castellanii. J. Appl. Microbiol. 82, 107-114 (1997).
  41. Lloyd, D. et al. Encystation in Acanthamoeba castellanii: development of biocide resistance. J. Eukaryot. Microbiol. 48, 11-16 (2001).
  42. Rama, P. et al. Bilateral Acanthamoeba keratitis with late recurrence of the infection in a corneal graft: a case report. Eur. J. Ophthalmol. 13, 311-314 (2003).
  43. Fouque, E. et al. Cellular, biochemical, and molecular changes during encystment of free-living amoebae. Eukaryot. Cell 11, 382-387 (2012).
  44. Lakhundi, S., Siddiqui, R. & Khan, N. A. Cellulose degradation: a therapeutic strategy in the improved treatment of Acanthamoeba infections. Parasites & Vectors 8, 23, https://doi.org/10.1186/s13071-015-0642-7 (2015).
  45. Roberts, C. W. & Henriquez, F. L. Drug target identification, validation, characterisation and exploitation for treatment of Acanthamoeba (species) infections. Exp. Parasitol. 126, 91-96 (2010).
  46. 9:4466 | https://doi.org/10.1038/s41598-019-41084-6 www.nature.com/scientificreports www.nature.com/scientificreports/
  47. Anwar, A., Khan, N. A. & Siddiqui, R. Combating Acanthamoeba spp. cysts: what are the options? Parasites & Vectors 11, 26, https:// doi.org/10.1186/s13071-017-2572-z (2018).
  48. Lorenzo-Morales, J. et al. Glycogen phosphorylase in Acanthamoeba spp.: Determining the role of the enzyme during the encystment process using RNA interference. Eukaryot. Cell 7, 509-517 (2008).
  49. Aqeel, Y., Siddiqui, R. & Khan, N. A. Silencing of xylose isomerase and cellulose synthase by siRNA inhibits encystation in Acanthamoeba castellanii. Parasitol. Res. 112, 1221-1227 (2013).
  50. Khan, N. A. Acanthamoeba, biology and pathogenesis, 1st ed. (Caister Academic Press, 2009).
  51. Ondriska, F. et al. First cases of Acanthamoeba keratitis in Slovakia. Ann. Agric. Environ. Med. 11, 335-341 (2004).
  52. Yu, H. S. et al. Laboratory investigation of Acanthamoeba lugdunensis from patients with keratitis. Invest. Ophthalmol. Vis. Sci. 45, 1418-1426 (2004).
  53. Garajová, M., Mrva, M., Timko, L., Lukáč, M. & Ondriska, F. Cytomorphological changes and susceptibility of clinical isolates of Acanthamoeba spp. to heterocyclic alkylphosphocholines. Exp. Parasitol. 145, S102-S110 (2014).
  54. Linder, M., Winiecka-Krusnell, J. & Linder, E. Use of recombinant cellulose-binding domains of Trichoderma reesei cellulase as a selective immunocytochemical marker for cellulose in Protozoa. Appl. Environ. Microbiol. 68, 2503-2508 (2002).
  55. Moon, E. K., Hong, Y., Chung, D. I., Goo, Y. K. & Kong, H. H. Down-regulation of cellulose synthase inhibits the formation of endocysts in. Acanthamoeba. Korean J. Parasitol. 52, 131-135 (2014).
  56. Herrera-Martínez, M., Hernández-Ramírez, V. I., Lagunes-Guillén, A. E., Chávez-Munguía, B. & Talamás-Rohana, P. Actin, RhoA, and Rab11 participation during encystment in Entamoeba invadens. BioMed Res. Int., https://doi.org/10.1155/2013/919345 (2013).
  57. Yumura, S., Mori, H. & Fukui, Y. Localization of actin and myosin for the study of ameboid movement in Dictyostelium using improved immunofluorescence. J. Cell Biol. 99, 894-899 (1984).
  58. Neujahr, R. et al. Three-dimensional patterns and redistribution of myosin II and actin in mitotic Dictyostelium cells. J. Cell Biol. 139, 1793-1804 (1997).
  59. Sameshima, M. et al. The formation of actin rods composed of actin tubules in Dictyostelium discoideum spores. J. Struct. Biol. 136, 7-19 (2001).
  60. Paredez, A. R., Somerville, C. R. & Ehrhardt, D. W. Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312, 1491-1495 (2006).
  61. Wightman, R. & Turner, S. R. The roles of the cytoskeleton during cellulose deposition at the secondary cell wall. Plant J. 54, 794-805 (2008).
  62. Derda, M., Winiecka-Krusnell, J., Linder, M. B. & Linder, E. Labeled Trichoderma reesei cellulase as a marker for Acanthamoeba cyst wall cellulose in infected tissues. Appl. Environ. Microbiol. 75, 6827-6830 (2009).
  63. Barrett, R. A. & Alexander, M. Resistance of cysts of amoebae to microbial decomposition. Appl. Environ. Microbiol. 33, 670-674 (1977).
  64. Vávra, J., Dahbiová, R., Hollister, W. S. & Canning, E. U. Staining of microsporidian spores by optical brighteners with remarks on the use of brighteners for the diagnosis of AIDS associated human microsporidioses. Folia Parasitol. 40, 267-272 (1993).
  65. Levraud, J. P. et al. Dictyostelium cell death: early emergence and demise of highly polarized paddle cells. J. Cell Biol. 160, 1105-1114 (2003).
  66. Mattar, F. E. & Byers, T. J. Morphological changes and the requirements for macromolecule synthesis during excystment of Acanthamoeba castellanii. J. Cell Biol. 49, 507-519 (1971).
  67. Stewart, J. R. & Weisman, R. A. A chemical and autoradiographic study of cellulose synthesis during the encystment of Acanthamoeba castellanii. Arch. Biochem Biophys. 161, 488-498 (1974).
  68. Zhang, P., McGlynn, A. C., Loomis, W. F., Blanton, R. L. & West, C. M. Spore coat formation and timely sporulation depend on cellulose in Dictyostelium. Differentiation 67, 72-79 (2000).
  69. Dudley, R., Alsam, S. & Khan, N. A. Cellulose biosynthesis pathway is a potential target in the improved treatment of Acanthamoeba keratitis. Appl. Microbiol. Biotechnol. 75, 133-140 (2007).
  70. Shraideh, Z., Kukulies, J., Wolf, K. V., Wohlfarth-Bottermann, K. E. & Stockem, W. Distribution of intramembranous particles in the plasmalemma of Physarum polycephalum during sclerotization, spore-formation and spore-germination. Cell Biol. Int. Rep. 6, 851-857 (1982).
  71. Bowers, B. A morphological study of plasma and phagosome membranes during endocytosis in Acanthamoeba. J. Cell Biol. 84, 246-260 (1980).
  72. Brown, R. M. Jr. & Montezinos, D. Cellulose microfibrils: visualization of biosynthetic and orienting complexes in association with the plasma membrane. Proc. Natl. Acad. Sci. USA 84, 6985-6989 (1976).
  73. Delmer, D. P. & Amor, Y. Cellulose biosynthesis. Plant Cell 7, 987-1000 (1995).
  74. Grimson, M. J., Haigler, C. H. & Blanton, R. L. Cellulose microfibrils, cell motility, and plasma membrane protein organization change in parallel during culmination in Dictyostelium discoideum. J. Cell Sci. 109, 3079-3087 (1996).
  75. Yoshikawa, H., Yamada, M. & Yoshida, Y. Freeze-fracture study of the trophozoite and the cyst of Entamoeba histolytica. J. Protozool. 35, 268-273 (1988).
  76. Page, F. C. Re-definition of the genus Acanthamoeba with descriptions of three species. J. Protozool. 14, 709-724 (1967).
  77. Biagini, G. A. et al. Hydrogenosomes of Metopus contortus physiologically resemble mitochondria. Microbiology 143, 1623-1629 (1997).
  78. Biagini, G. A., van der Giezen, M., Hill, B., Winters, C. & Lloyd, D. Ca2+ accumulation in the hydrogenosomes of Neocallimastix frontalis L2: a mitochondrial-like physiological role. FEMS Microbiol. Lett. 149, 227-232 (1997).
  79. Hopkins, E. W. Microchemical tests on the cell walls of certain fungi. Cellulose and chitin. Trans. Wis. Acad. Sci. Arts Lett. 24, 187-196 (1929).
  80. Valigurová, A. Sophisticated adaptations of Gregarina cuneata (Apicomplexa) feeding stages for epicellular parasitism. PLoS One 7, e42606, https://doi.org/10.1371/journal.pone.0042606 (2012).
  81. Valigurová, A., Michalková, V. & Koudela, B. Eugregarine trophozoite detachment from the host epithelium via epimerite retraction: Fiction or fact? Int. J. Parasitol. 39, 1235-1242 (2009).
  82. Spurr, A. R. A low viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26, 31-43 (1969).