Evolution of elaborate parental care: phenotypic and genetic correlations between parent and offspring traits (original) (raw)

Current brood size and residual reproductive value predict offspring desertion in the burying beetle Nicrophorus vespilloides

Behavioral Ecology, 2009

Life-history theory suggests that offspring desertion can be an adaptive reproductive strategy, in which parents forgo the costly care of an unprofitable current brood to save resources for future reproduction. In the burying beetle, Nicrophorus vespilloides, parents commonly abandon their offspring to the care of others, resulting in female-only care, male-only care, brood parasitism, and the care of offspring sired by satellite males. Furthermore, when there is biparental care, males routinely desert the brood before larval development is complete, leaving females behind to tend their young. We attempted to understand these patterns of offspring desertion by using laboratory experiments to compare the fitness costs associated with parental care for each sex and the residual reproductive value of the 2 sexes. We also tested whether current brood size and residual reproductive value together predicted the incidence of brood desertion. We found that males and females each sustained fecundity costs as a consequence of caring for larvae and that these costs were of comparable magnitude. Nevertheless, males had greater residual reproductive value than females and were more likely than females to desert experimental broods. Our results can explain why males desert the brood earlier than females in nature and why female-only care is more common than male-only care. They also suggest that the tipping point from brood parasitism or satellite male behavior to communal breeding (and vice versa) depends on the value of the current brood relative to residual reproductive value.

Delayed benefits of paternal care in the burying beetle Nicrophorus vespilloides

Animal Behaviour, 2000

Burying beetles, Nicrophorus spp., inter the carcasses of small vertebrates as a food source for their offspring. Females can bury a carcass and rear a brood on it alone, but are frequently assisted by a male whose presence reduces the risk of the carcass being taken over by other beetles. However, the male often stays for longer than the carcass is vulnerable to take-over, and he cares for the brood without conferring any further benefits on it. In a laboratory experiment using N. vespilloides, we found that, in the absence of competitors, male assistance conferred no advantages on the brood for which he was caring, but significantly increased the subsequent reproductive success of his mate, in terms of the mass and rate of development of a second brood, reared alone. We suggest that this is due to a reduced parental effort of assisted females, who spent less time feeding offspring and more time resting than unassisted females whilst rearing their first broods. In the field, a female is unlikely to pair with the same male for consecutive broods, so we discuss the possible benefits a male may accrue from increasing his mate's reproductive success. We also discuss the relevance of these results to our understanding of the evolution of biparental care in birds.

Post-hatching parental care masks the effects of egg size on offspring fitness: a removal experiment on burying beetles

Journal of Evolutionary Biology, 2012

Parents can increase the fitness of their offspring by allocating nutrients to eggs and/or providing care for eggs and offspring. Although we have a good understanding of the adaptive significance of both egg size and parental care, remarkably little is known about the co-evolution of these two mechanisms for increasing offspring fitness. Here, we report a parental removal experiment on the burying beetle Nicrophorus vespilloides in which we test whether post-hatching parental care masks the effect of egg size on offspring fitness. As predicted, we found that the parent's presence or absence had a strong main effect on larval body mass, whereas there was no detectable effect of egg size. Furthermore, egg size had a strong and positive effect on offspring body mass in the parent's absence, whereas it had no effect on offspring body mass in the parent's presence. These results support the suggestion that the stronger effect of post-hatching parental care on offspring growth masks the weaker effect of egg size. We found no correlation between the number and size of eggs. However, there was a negative correlation between larval body mass and brood size in the parent's presence, but not in its absence. These findings suggest that the trade-off between number and size of offspring is shifted from the egg stage towards the end of the parental care period and that post-hatching parental care somehow moderates this trade-off.

Parental care improves offspring survival and growth in burying beetles

Animal Behaviour, 1998

Burying beetles (genus Nicrophorus) provide elaborate parental care to their offspring. Parental beetles defend a small vertebrate carcass, which constitutes the sole food source for the larvae. They also manipulate the carcass in various ways and directly regurgitate pre-digested carrion to the young. The benefits of carcass manipulation and regurgitation have been the subject of a few small-scale studies that have yielded conflicting results. In this study, we investigated the benefits of these behaviours and tested for possible beneficial effects on larval survival rates and final body mass in N. vespilloides. In this species: (1) larval survival and mass were significantly higher in broods receiving parental care throughout larval development on the carcass than in broods developing in the absence of adults; (2) parental presence immediately subsequent to larval hatching greatly improved larval survival rates; (3) continued parental presence for several days further improved larval growth, leading to a greater final mass of individual larvae; (4) larval survival and growth were improved by parental preparation of carcasses and by an excision made in the integument of the carcass surface by the parents that allows the larvae ready access to their food; (5) positive effects of parental feeding on larval survival and growth were not mediated by the transfer of symbionts. Copyright 1998 The Association for the Study of Animal Behaviour.

Biparental care is predominant and beneficial to parents in the burying beetleNicrophorus orbicollis(Coleoptera: Silphidae)

Biological Journal of the Linnean Society, 2016

Parenting strategies can be flexible within a species and may have varying fitness effects. Understanding this flexibility and its fitness consequences is important for understanding why parenting strategies evolve. In the present study, we investigate the fitness consequences of flexible parenting in the burying beetle Nicrophorus orbicollis, a species known for its advanced provisioning behaviour of regurgitated vertebrate carrion to offspring by both sexes. We show that, even when a parent is freely allowed to abandon the carcass at any point in time, biparental post-hatching care is the most common pattern of care adopted in N. orbicollis. Furthermore, two parents together raised more offspring than single parents of either sex, showing that the presence of the male can directly influence parental fitness even in the absence of competitors. This contrasts with studies in other species of burying beetle, where biparental families do not differ in offspring number. This may explain why biparental care is more common in N. orbicollis than in other burying beetles. We suggest how the fitness benefits of two parents may play a role in the evolution and maintenance of flexible biparental care in N. orbicollis.

Development and the effects of extended parenting in the coldā€breeding burying beetle Nicrophorus sayi

Ecological Entomology, 2018

1. Burying beetles (Nicrophorus spp.) provide an excellent model system to test predictions about the relationships between environment, life-history and behaviour. All species in the genus display similar natural histories, breeding on vertebrate carcasses and providing parental care to developing offspring. However, variations in other aspects of species' ecologies provide a rich framework to examine the evolution of parental behaviours and other traits. 2. One little-studied species, N. sayi, breeds in substantially colder temperatures than its congeners, creating a potentially harsh environment for offspring. Here, we examined the timing of reproductive and developmental events in this species, and also investigated the effects of removing parents on offspring performance. 3. We find that development is not only extremely slow in this species, but it is also delayed even in comparison to other burying beetles reared at similar temperatures. However, the presence of parents reduces the time that offspring take to leave the carcass. This decrease in development time does not appear to result in a trade-off with mortality or body size. 4. From these results, we suggest that very slow development may be advantageous when living in a particularly cold environment. Additionally, one role of extended parental care may be to assist offspring in dealing with these harsh conditions, and to mitigate the potentially negative consequences of adopting such a slow life-history strategy.

A limit on the extent to which increased egg size can compensate for a poor postnatal environment revealed experimentally in the burying beetle, Nicrophorus vespilloides

Ecology and Evolution, 2015

It is often assumed that there is a positive relationship between egg size and offspring fitness. However, recent studies have suggested that egg size has a greater effect on offspring fitness in low-quality environments than in highquality environments. Such observations suggest that mothers may compensate for poor posthatching environments by increasing egg size. In this paper we test whether there is a limit on the extent to which increased egg size can compensate for the removal of posthatching parental care in the burying beetle, Nicrophorus vespilloides. Previous experiments with N. vespilloides suggest that an increased egg size can compensate for a relatively poor environment after hatching. Here, we phenotypically engineered female N. vespilloides to produce large or small eggs by varying the amount of time they were allowed to feed on the carcass as larvae. We then tested whether differences between these groups in egg size translated into differences in larval performance in a harsh postnatal environment that excluded parental care. We found that females engineered to produce large eggs did not have higher breeding success, and nor did they produce larger larvae than females engineered to produce small eggs. These results suggest that there is a limit on the extent to which increased maternal investment in egg size can compensate for a poor posthatching environment. We discuss the implication of our results for a recent study showing that experimental N. vespilloides populations can adapt rapidly to the absence of posthatching parental care.

The role of indirect genetic effects in the evolution of interacting reproductive behaviors in the burying beetle, Nicrophorus vespilloides

Ecology and Evolution

The social environment is arguably the most dynamic and fluctuating environmental component organisms encounter and respond to (Royle, Russell, & Wilson, 2014; Taborsky & Oliveira, 2012). This is because in social interactions, the "environment" consists of other interacting individuals expressing phenotypes that are also subject to evolution (Moore, Brodie, & Wolf, 1997). These social environments differ from nonsocial environments such as temperature and food availability not just in their dynamism but also in their heritable properties. When the phenotype of a focal individual is affected by genes being expressed in another individual with whom they are or have been interacting, for example, when individuals respond to the behavior of another individual by changing their own behavior (i.e., social plasticity; Royle et al., 2014;