Quantitative imaging for development of companion diagnostics to drugs targeting HGF/MET (original) (raw)
Related papers
Biomedicines, 2014
Monoclonal antibodies can be seen as valuable tools for many aspects of basic as well as applied sciences. In the case of MET/HGFR, they allowed the identification of truncated isoforms of the receptor, as well as the dissection of different epitopes, establishing structure-function relationships. Antibodies directed against MET extracellular domain were found to be full or partial receptor agonists or antagonists. The agonists can mimic the effects of the different isoforms of the natural ligand, but with the advantage of being more stable than the latter. Thus, some agonist antibodies promote all the biological responses triggered by MET activation, including motility, proliferation, morphogenesis, and protection from apoptosis, while others can induce only a migratory response. On the other hand, antagonists can inhibit MET-driven biological functions either by competing with the ligand or by removing the receptor from the cell surface. Since MET/HGFR is often over-expressed and/or aberrantly activated in tumors, monoclonal antibodies can be used as probes for MET detection or as "bullets" to target MET-expressing tumor cells, thus pointing to their use in diagnosis and therapy.
2023
Purpose: Rational development of targeted MET inhibitors for cancer treatment requires a quantitative understanding of target pharmacodynamics, including molecular target engagement, mechanism of action, and duration of effect. Experimental Design: Sandwich immunoassays and specimen handling procedures were developed and validated for quantifying full-length MET and its key phosphospecies (pMET) in core tumor biopsies. MET was captured using an antibody to the extracellular domain and then probed using antibodies to its C-terminus (full-length) and epitopes containing pY1234/ 1235, pY1235, and pY1356. Using pMET:MET ratios as assay endpoints, MET inhibitor pharmacodynamics were characterized in MET-amplified and-compensated (VEGFR blockade) models. Results: By limiting cold ischemia time to less than two minutes, the pharmacodynamic effects of the MET inhibitors PHA665752 and PF02341066 (crizotinib) were quantifiable using core needle biopsies of human gastric carcinoma xenografts (GTL-16 and SNU5). One dose decreased pY1234/1235 MET: MET, pY1235-MET:MET, and pY1356-MET:MET ratios by 60% to 80% within 4 hours, but this effect was not fully sustained despite continued daily dosing. VEGFR blockade by pazopanib increased pY1235-MET:MET and pY1356-MET:MET ratios, which was reversed by tivantinib. Full-length MET was quantifiable in 5 of 5 core needle samples obtained from a resected hereditary papillary renal carcinoma, but the levels of pMET species were near the assay lower limit of quantitation. Conclusions: These validated immunoassays for pharmacodynamic biomarkers of MET signaling are suitable for studying MET responses in amplified cancers as well as compensatory responses to VEGFR blockade. Incorporating pharmacodynamic biomarker studies into clinical trials of MET inhibitors could provide critical proof of mechanism and proof of concept for the field.
Clinical cancer research : an official journal of the American Association for Cancer Research, 2016
Rational development of targeted MET inhibitors for cancer treatment requires a quantitative understanding of target pharmacodynamics, including molecular target engagement, mechanism of action, and duration of effect. Sandwich immunoassays and specimen-handling procedures were developed and validated for quantifying full-length MET and its key phosphospecies (pMET) in core tumor biopsies. MET was captured using an antibody to the extracellular domain and then probed using antibodies to its Cterminus (full-length) and epitopes containing pY1234/1235, pY1235, and pY1356. Using pMET:MET ratios as assay endpoints, MET inhibitor pharmacodynamics were characterized in MET-amplified and -compensated (VEGFR blockade) models. By limiting cold ischemia time to less than two min, the pharmacodynamic effects of the MET inhibitors PHA665752 and PF02341066 (crizotinib) were quantifiable using core needle biopsies of human gastric carcinoma xenografts (GTL-16 and SNU5). One dose decreased pY1234/...
Molecular Cancer Therapeutics, 2014
Onartuzumab, a humanized, monovalent monoclonal anti-MET antibody, antagonizes MET signaling by inhibiting binding of its ligand, hepatocyte growth factor (HGF). We investigated the effects of onartuzumab on cell-associated and circulating (shed) MET (sMET) and circulating HGF in vitro and nonclinically to determine their utility as pharmacodynamic biomarkers for onartuzumab. Effects of onartuzumab on cell-associated MET were assessed by flow cytometry and immunofluorescence. sMET and HGF were measured in cell supernatants and in serum or plasma from multiple species (mouse, cynomolgus monkey, and human) using platebased immunoassays. Unlike bivalent anti-MET antibodies, onartuzumab stably associates with MET on the surface of cells without inducing MET internalization or shedding. Onartuzumab delayed the clearance of human xenograft tumor-produced sMET from the circulation of mice, and endogenous sMET in cynomolgus monkeys. In mice harboring MET-expressing xenograft tumors, in the absence of onartuzumab, levels of human sMET correlated with tumor size, and may be predictive of MET-expressing tumor burden. Because binding of sMET to onartuzumab in circulation resulted in increasing sMET serum concentrations due to reduced clearance, this likely renders sMET unsuitable as a pharmacodynamic biomarker for onartuzumab. There was no observed effect of onartuzumab on circulating HGF levels in xenograft tumor-bearing mice or endogenous HGF in cynomolgus monkeys. Although sMET and HGF may serve as predictive biomarkers for MET therapeutics, these data do not support their use as pharmacodynamic biomarkers for onartuzumab. Mol Cancer Ther; 13(2); 1-13. Ó2013 AACR.
Targeting the HGF/Met signalling pathway in cancer
European Journal of Cancer, 2010
Cancer drug development A B S T R A C T Under normal conditions, hepatocyte growth factor (HGF)-induced Met tyrosine kinase (TK) activation is tightly regulated by paracrine ligand delivery, ligand activation at the target cell surface, and ligand activated receptor internalisation and degradation. Despite these controls, HGF/Met signalling contributes to oncogenesis and tumour progression in several cancers and promotes aggressive cellular invasiveness that is strongly linked to tumour metastasis. The prevalence of HGF/Met pathway activation in human malignancies has driven rapid growth in cancer drug development programmes. Pathway inhibitors can be divided broadly into biologicals and low molecular weight synthetic TK inhibitors; of these, the latter now outnumber all other inhibitor types. We review here the basic properties of HGF/Met pathway antagonists now in preclinical and clinical development as well as the latest clinical trial results. The main challenges facing the effective use of HGF/Met-targeted antagonists for cancer treatment include optimal patient selection, diagnostic and pharmacodynamic biomarker development, and the identification and testing of optimal therapy combinations. The wealth of basic information, analytical reagents and model systems available concerning HGF/Met oncogenic signalling will continue to be invaluable in meeting these challenges and moving expeditiously toward more effective disease control.
Targeting the HGF/Met signaling pathway in cancer therapy
Expert Opinion on Therapeutic Targets, 2012
Introduction-Under normal conditions, hepatocyte growth factor (HGF)-induced activation of its cell surface receptor, the Met tyrosine kinase (TK), is tightly regulated by paracrine ligand delivery, ligand activation at the target cell surface, and ligand activated receptor internalization and degradation. Despite these controls, HGF/Met signaling contributes to oncogenesis and tumor progression in several cancers and promotes aggressive cellular invasiveness that is strongly linked to tumor metastasis.
Clinical cancer research : an official journal of the American Association for Cancer Research, 2014
MET, the receptor for hepatocyte growth factor (HGF), has been implicated in driving tumor proliferation and metastasis. High MET expression is correlated with poor prognosis in multiple cancers. Activation of MET can be induced either by HGF-independent mechanisms such as gene amplification, specific genetic mutations, and transcriptional upregulation or by HGF-dependent autocrine or paracrine mechanisms. Here, we report on LY2875358, a novel humanized bivalent anti-MET antibody that has high neutralization and internalization activities, resulting in inhibition of both HGF-dependent and HGF-independent MET pathway activation and tumor growth. In contrast to other bivalent MET antibodies, LY2875358 exhibits no functional agonist activity and does not stimulate biologic activities such as cell proliferation, scattering, invasion, tubulogenesis, or apoptosis protection in various HGF-responsive cells and no evidence of inducing proliferation in vivo in a monkey toxicity study. LY2875...
Four individually druggable MET hotspots mediate HGF-driven tumor progression
Journal of Clinical Investigation, 2014
Activation of MET by HGF plays a key role in tumor progression. Using a recently developed llama platform that generates human-like immunoglobulins, we selected 68 different antibodies that compete with HGF for binding to MET. HGF-competing antibodies recognized 4 distinct hotspots localized in different MET domains. We identified 1 hotspot that coincides with the known HGF β chain binding site on blades 2-3 of the SEMA domain β-propeller. We determined that a second and a third hotspot lie within blade 5 of the SEMA domain and IPT domains 2-3, both of which are thought to bind to HGF α chain. Characterization of the fourth hotspot revealed a region across the PSI-IPT 1 domains not previously associated with HGF binding. Individual or combined targeting of these hotspots effectively interrupted HGF/MET signaling in multiple cell-based biochemical and biological assays. Selected antibodies directed against SEMA blades 2-3 and the PSI-IPT 1 region inhibited brain invasion and prolonged survival in a glioblastoma multiforme model, prevented metastatic disease following neoadjuvant therapy in a triple-negative mammary carcinoma model, and suppressed cancer cell dissemination to the liver in a KRAS-mutant metastatic colorectal cancer model. These results identify multiple regions of MET responsible for HGF-mediated tumor progression, unraveling the complexity of HGF-MET interaction, and provide selective molecular tools for targeting MET activity in cancer.
Microenvironment-Derived HGF Overcomes Genetically Determined Sensitivity to Anti-MET Drugs
Cancer Research, 2014
Cell-based drug screenings indicate that tumors displaying c-MET gene amplification are "addicted" to MET signaling and therefore are very sensitive to MET-targeted agents. However, these screenings were conducted in the absence of the MET ligand, hepatocyte growth factor (HGF), which is abundant in the tumor microenvironment. Sensitivity of six MET-addicted human tumor cells to three MET kinase inhibitors (JNJ-38877605, PHA-665752, crizotinib) and one antagonistic anti-MET antibody (DN30 Fab) was analyzed in the absence or presence of HGF, in a stroma-tumor coculture system, and by combining anti-MET drugs with an HGF neutralizing antibody (ficlatuzumab) in human HGF knock-in mice bearing c-MET-amplified tumors. In all models examined, HGF promoted resistance to MET-targeted agents, affecting both their potency and efficacy. HGF-induced resistance was due to restoration of physiologic GAB1-mediated PI3K activation that compensated for loss of aberrant HER3-dependent PI3K signaling. Ficlatuzumab restored sensitivity to MET-targeted agents in coculture systems and overcame resistance to JNJ-38877605, crizotinib, and DN30 Fab in human HGF knock-in mice. These data suggest that c-MET-amplified tumor cells-which normally exhibit ligand-independent, constitutive MET activation-become dependent on HGF for survival upon pharmacologic MET inhibition. Because HGF is frequently overexpressed in human cancer, this mechanism may represent a major cause of resistance to anti-MET therapies. The ability of ficlatuzumab to overcome HGF-mediated resistance generates proof of principle that vertical inhibition of both a tyrosine kinase receptor and its ligand can be therapeutically beneficial and opens new perspectives for the treatment of MET-dependent tumors. Cancer Res; 74(22); 6598-609. Ó2014 AACR.
Role of HGF–MET Signaling in Primary and Acquired Resistance to Targeted Therapies in Cancer
Biomedicines, 2014
The Hepatocyte growth factor (HGF)-mesenchymal-epithelial transition (MET) pathway is deregulated in several cancers and is associated with aggressive phenotype and worse prognosis. MET, a tyrosine kinase receptor activated by HGF, plays a physiological role in embryogenesis, promoting cell growth, survival and motility. HGF-MET aberrant activation in tumorigenesis acts through various mechanisms: paracrine/autocrine HGF production, MET overexpression, MET germ-line and sporadic mutations and cross-talk with other growth factor receptors. In addition, MET activation could represent a mechanism of escape from other targeted therapies, through receptor amplification or over-stimulation by the ligand, as demonstrated in non-small cell lung cancer (NSCLC) and colorectal cancer (CRC) models with acquired resistance to epidermal growth factor receptor (EGFR) inhibitors and also in models of melanoma resistant to the BRAF inhibitor vemurafenib. As a consequence, a lot of molecules targeting MET signaling are under clinical investigation as single agent or in combination with other targeted drugs. Patient selection, based on MET expression on tumor samples (eventually, by re-biopsy of new metastatic sites), and pharmacokinetic/pharmacodynamic markers are needed. Authors review the latest data on the role of MET and the molecular