Study of the radio-opacity of base and liner dental materials using a digital radiography system (original) (raw)
Related papers
Comparative study of digital radiopacity of dental cements
Caspian Journal of Dental Research, 2014
Introduction: Radiopacity is a necessary property for luting cements . The aim of this study was to investigate the radiopacity of some luting dental cements used in prosthetic dentistry. Methods: Five disclike samples of each material (6 x 1 mm) were prepared from panavia F2.0(Pa), Chioce2 (Ch.2), Glass ionomer GC (GI GC), zinc phosphate Hoffmann’s (ZP hof), zinc polycarboxylate Hoffmann’s (ZPC hof), Glass ionomer ariadent( GI ari), zinc phosphate ariadent(ZP ari) and zinc polycarboxylate ariadent (ZPC ari). The radiopacity of each material along with aluminium step wedge were measured from radiographic images using a digital radiography. The average measured radiopacities from five areas were taken into account, which were measured by Digora for windows (DFW) software using a PSP digital sensor. Results: There was a significant difference between radiopacity value of all luting materials (P≤0.001). ZP ari had the highest radiopacity with 7.7±0.55 mm aluminium. The Glass ionomer ariadent ari dent showed the lowest radiopacity value with 0.82±0.31 mm aluminium. Conclusion: All dental cements showed radiopacity values equivalent to or greater than the ISO 4049:2000(E)standard except ariadent Glass ionomer and this could be considered suitable for use in restoration cementation.
Radiopacity of calcium hydroxide cement compared with human tooth structure
Journal of Applied Oral Science, 2004
AIMS: All materials added to teeth should present an adequate radiopacity to allow the detection of secondary caries. Usually, in extensive cavities, base materials like calcium hydroxide cement are used for the purpose of protecting the pulp. In an attempt to improve the efficiency of radiographic detection of this material, this study aimed to determine the radiopacity of three calcium hydroxide cements and to compare the radiopacity of these materials with dentin and enamel. METHODS: Radiographs were taken of 1-mm thick specimens of three calcium hydroxide cements: Hydro-C, Dycal and Life, an aluminium stepwedge, a lead foil, and one 1-mm thick human tooth slice. Densitometric measurements were obtained after radiographic processing. The radiopacity values of the calcium hydroxide cements, dentin and enamel were expressed in terms of the equivalent thickness of aluminium. RESULTS: The analysis of variance indicated statistically significant difference only for Life, which presented the lowest radiopacity when compared to the other cements. However, all cements and enamel possessed a radiopacity equivalent to 2mm Al, while dentin presented a radiopacity equivalent to 1mm Al. CONCLUSION: All tested cements presented a similar radiopacity to that of enamel and they meet the ISO 4049 specifications.
Radiopacity of dental restorative materials
Clinical Oral Investigations, 2013
Objectives Radiopacity of dental materials enables clinician to radiographically diagnose secondary caries and marginal defects which are usually located on the proximal gingival margin. The aim of this study was to measure the radiopacity of 33 conventional resin composites, 16 flowable resin composites, and 7 glass ionomer cements and to compare the results with the radiopacity values declared by the manufacturers. Materials and methods From each restorative material, six 2-mm-thick disk-shaped specimens were fabricated and eight 2-mm-thick sections of teeth were made and used as reference. The material samples and tooth sections were digitally radiographed together with the aluminum stepwedge. Gray values were obtained from the radiographic images and radiopacity values were calculated and statistically analyzed. Post hoc Tukey's honestly significant difference test was used to calculate significant differences in radiopacity values between materials and reference dentin and enamel values.
This study evaluated the radiopacity of different resin-based luting materials and compared the results to human and bovine dental hard tissues. Disc specimens (N=130, n=10 per group) (diameter: 6 mm, thickness: 1 mm) were prepared from 10 resin-based and 3 conventional luting cements. Human canine dentin (n=10), bovine enamel (n=10), bovine dentin (n=10) and Aluminium (Al) step wedge were used as references. The optical density values of each material were measured from radiographic images using a transmission densitometer. Al step wedge thickness and optical density values were plotted and equivalent Al thickness values were determined for radiopacity measurements of each material. The radiopacity values of conventional cements and two resin luting materials (Rely X Unicem and Variolink II), were significantly higher than that of bovine enamel that could be preferred for restorations cemented on enamel. Since all examined resin-based luting materials showed radiopacity values equivalent to or greater than that of human and bovine dentin, they could be considered suitable for the restorations cemented on dentin.
2006
he radiopacity of esthetic restorative materials has been established as an important requirement, improving the radiographic diagnosis. The aim of this study was to evaluate the radiopacity of six restorative materials using a direct digital image system, comparing them to the dental tissues (enamel-dentin), expressed as equivalent thickness of aluminum (millimeters of aluminum). Five specimens of each material were made. Three 2-mm thick longitudinal sections were cut from an intact extracted permanent molar tooth (including enamel and dentin). An aluminum step wedge with 9 steps was used. The samples of different materials were placed on a phosphor plate together with a tooth section, aluminum step wedge and metal code letter, and were exposed using a dental x-ray unit. Five measurements of radiographic density were obtained from each image of each item assessed (restorative material, enamel, dentin, each step of the aluminum step wedge) and the mean of these values was calculated. Radiopacity values were subsequently calculated as equivalents of aluminum thickness. Analysis of variance (ANOVA) indicated significant differences in radiopacity values among the materials (P<0.0001). The radiopacity values of the restorative materials evaluated were, in decreasing order: TPH, F2000, Synergy, Prisma Flow, Degufill, Luxat. Only Luxat had significantly lower radiopacity values than dentin. One material (Degufill) had similar radiopacity values to enamel and four (TPH, F2000, Synergy and Prisma Flow) had significantly higher radiopacity values than enamel. In conclusion, to assess the adequacy of posterior composite restorations it is important that the restorative material to be used has enough radiopacity, in order to be easily distinguished from the tooth structure in the radiographic image. Knowledge on the radiopacity of different materials helps professionals to select the most suitable material, along with other properties such as biocompatibility, adhesion and esthetic. Uniterms: Densitometry; Dental material; Digital radiography. radiopacidade dos materiais tem sido valorizada como importante requisito, incrementando o diagnóstico radiográfico. O objetivo deste estudo foi avaliar, no sistema digital Digora, as densidades radiográficas de 06 materiais restauradores comparando-os aos tecidos dentais (esmalte e dentina), expressos em milímetros de alumínio (mm Al). Foram confeccionadas 05 amostras de cada material e três cortes de um molar extraído hígido (incluindo esmalte e dentina), com 2 mm de espessura, e um penetrômetro de alumínio com 09 degraus. Sobre cada placa óptica foram colocados amostras dos diferentes materiais, um corte do dente humano, o penetrômetro e a identificação, e feita a exposição utilizando um aparelho de raios X. Foram obtidas 05 medidas de densidade radiográfica de cada item avaliado (material restaurador, esmalte, dentina e degraus do penetrômetro de alumínio) em cada radiografia, e calculadas as médias destas medidas. A partir destas médias de densidade, foram calculados os valores da radiopacidade destes itens em mm de Al, em cada radiografia. Análise de variância (ANOVA) indicou diferença significante entre os valores de radiopacidade dos materiais (p<0.0001). A radiopacidade dos materiais restauradores avaliados foi em ordem decrescente: TPH, F2000, Synergy, Prisma Flow, Degufill, Luxat. Apenas o Luxat apresentou radiopacidade inferior ao esmalte e dentina. Um material não diferiu estatisticamente do esmalte (Degufill) e quatro apresentaram radiopacidade superior ao esmalte (TPH, F2000, Synergy, Prisma Flow). Portanto, faz-se necessária a avaliação de materiais restauradores disponíveis no mercado, proporcionando aos profissionais informações adicionais sobre os materiais restauradores que eles utilizarão.
2015
Aim: the purpose of this study was to evaluate the radiopacity of different filling materials, using resources of digital radiography in a human tooth model. Methodology: seventy extracted single-rooted human teeth were selected, the coronal access was performed, and the working length was established 1 mm short of the foramen. After chemo-mechanical preparation the teeth were divided into 7 groups (n = 10) according to the filling material used: G1 Epiphany, G2 AH Plus, G3 EndoRez, G4 EndoFill, G5 Endomethasone, G6 Sealapex and G7 Sealer 26. In the G1 Epiphany system, Resilon cones were used; however, in all other groups gutta-percha cones were used. After seven days of storage, digital radiographs were taken to assess the results. To evaluate the radiopacity, the digital software DBSWIN generated a colorimetric graphic for each sample, correlating the color gradient observed in the sample with a corresponding numerical score. The data were statistically analyzed by ANOVA and Tukey...
Radiopacity of 28 Composite Resins for Teeth Restorations
The Journal of Contemporary Dental Practice, 2016
ABSTRACTAimRadiopacity is a fundamental requisite to check marginal adaptation of restorations. Our objective was to assess the radiopacity of 28 brands of light-cured composite resins and compare their radiopacity with that of enamel, dentin, and aluminum of equivalent thickness.Materials and methodsComposite resin disks (0.2, 0.5, and 1 mm) were radiographed by the digital method, together with an aluminum penetrometer and a human tooth equivalent tooth section. The degree of radiopacity of each image was quantified using digital image processing. Wilcoxon nonparametric test was used for comparison of the mean thickness of each material.ResultsAll of the materials tested had an equal or greater radiopacity than that of aluminum of equivalent thickness. Similar results for enamel were found with the exception of Durafill, which was less radiopaque than enamel (p < 0.05). All the specimens were more radiopaque than dentin, except for P90 (which was equally radiopaque) and Durafil...
Comparison of Radiopacity of Dentin Replacement Materials
Journal of Dental Materials and Techniques, 2020
Introduction: There are numerous commercially available dentin replacement materials but radiopacity level of these materials is unknown. The aim of this study was to evaluate radiopacity of seven dentin replacement materials in Class I cavities using a digital analysis system. Methods: TheraCal LC, Biodentine, Calcimol LC, Ultra-Blend Plus, Equia Forte, Ionoseal, and ApaCal ART were used as dentin replacement materials. Seventy molar teeth were prepared with Class I cavities and then were divided into seven groups. Each material tested was placed on floor of the cavity and then filled by Filtek Z250 composite (3M ESPE). Radiographic images were taken using an indirect digital system. Also, one discshaped specimen from each material was examined by energy-assisted X-ray spectroscopy for composition analysis. Results: Radiopacity values were significantly different among materials (p < 0.0001). Ultra-Blend Plus had the lowest radiopacity values. Calcimol LC, Equia Forte, and Ionoseal had significantly higher radiopacity levels compared to other materials and enamel. All materials demonstrated significantly higher radiopacity than dentin. Conclusions: Materials tested had different types and amounts of radiopacifier elements. Dentin replacement materials with lower radiopacity levels can create clinical challenges for diagnostic observations on margins.