Dendritic Cells are Both Targets and Initiators of Peripheral Immune Tolerance to Self (original) (raw)

Abstract

Mucin 1 (MUC1) is a highly glycosylated membrane-bound protein normally expressed on the apical surface of ductal epithelial cells. During malignant transformation MUC1 acts as a Tumor-Associated Antigen (TAA) by virtue of its overexpression, loss of polarity, and hypoglycosylation, allowing for T cell and antibody recognition of cryptic peptide epitopes derived from its extracellular domain. Almost all adenocarcinomas express abnormal MUC1 making it an attractive target for cancer vaccines. However, vaccination of MUC1.Tg mice with a synthetic, unglycosylated MUC1 peptide (MUC1p) that mimics one tumor form of the molecule results in a weak anti-MUC1p immune response. WT mice receiving the same vaccine generate robust immunity to MUC1p, suggesting that it is viewed as a "self" antigen in MUC1.Tg mice, and apparently subject to peripheral tolerance. To globally query these distinct programs of immunity and tolerance induced by MUC1p in WT and MUC1.Tg mice respectively, we conducted whole transcriptome analysis of splenic RNA 24h and 72h after i.v. immunization of both mouse strains with MUC1p. We found that a new cohort of "pancreatic" enzymes (e.g. trypsin and CPB1) were expressed by splenic dendritic cells (DC) and regulated such that immunization with self-antigen suppressed their expression while foreign-antigens induced it within 24h post-vaccination. The relative expression of trypsin and CPB1 was highly correlated with the immunogenicity of the DC. Suppressed expression marked DC that were highly tolerized as demonstrated by low costimulatory molecule expression, limited motility, production of Aldh1/2, and preferential priming of naïve CD4 + T cells into Foxp3 + Treg versus IFNγ + cells, while enhanced expression identified immunogenic DC. Deficient NFκβ pathway activation and enhanced STAT3 phosphorylation transcriptionally underlie tolerized DC along v with sustained expression of zDC. Trypsin was required for efficient degradation of the extracellular matrix, while CPB1 was required by DC to induce optimal, antigen-specific proliferation of CD4 + T cells. Importantly, these vaccine-induced changes in DC phenotype affected the entire splenic DC compartment, revealing an underappreciated role for endogenous DC in the transmission and amplification of vaccine-induced immunity or tolerance. These results underscore the importance of vaccine antigen choice and will contribute to rational vaccine design. vi TABLE OF CONTENTS

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (282)

  1. were permeablized and stained with antibodies to LAMP-1 (Green) and CPB1 (Red). Cells were fixed and imaged using confocal microscopy. Slides were imaged on an upright Olympus Fluoview 1000 at 60X. Data are representative of 2 independent experiments. BIBLIOGRAPHY
  2. Burnet, F. M. 1959. The clonal selection theory of acquired immunity. Vanderbilt University Press, Nashville,.
  3. Billingham, R. E., L. Brent, and P. B. Medawar. 1953. Actively acquired tolerance of foreign cells. Nature 172: 603-606.
  4. Mueller, D. L. 2010. Mechanisms maintaining peripheral tolerance. Nat Immunol 11: 21- 27.
  5. Turner, M. S., P. A. Cohen, and O. J. Finn. 2007. Lack of effective MUC1 tumor antigen- specific immunity in MUC1-transgenic mice results from a Th/T regulatory cell imbalance that can be corrected by adoptive transfer of wild-type Th cells. J Immunol 178: 2787-2793.
  6. Ryan, S. O., M. S. Turner, J. Gariépy, and O. J. Finn. 2010. Tumor antigen epitopes interpreted by the immune system as self or abnormal-self differentially affect cancer vaccine responses. Cancer Res 70: 5788-5796.
  7. Farkas, A. M., D. M. Marvel, and O. J. Finn. 2013. Antigen Choice Determines Vaccine- Induced Generation of Immunogenic versus Tolerogenic Dendritic Cells That Are Marked by Differential Expression of Pancreatic Enzymes. J Immunol.
  8. Ramanathan, R. K., K. M. Lee, J. McKolanis, E. Hitbold, W. Schraut, A. J. Moser, E. Warnick, T. Whiteside, J. Osborne, H. Kim, R. Day, M. Troetschel, and O. J. Finn. 2005. Phase I study of a MUC1 vaccine composed of different doses of MUC1 peptide with SB-AS2 adjuvant in resected and locally advanced pancreatic cancer. Cancer Immunol Immunother 54: 254-264.
  9. Bousso, P., N. R. Bhakta, R. S. Lewis, and E. Robey. 2002. Dynamics of thymocyte- stromal cell interactions visualized by two-photon microscopy. Science 296: 1876-1880.
  10. Hogquist, K. A., T. A. Baldwin, and S. C. Jameson. 2005. Central tolerance: learning self-control in the thymus. Nat Rev Immunol 5: 772-782.
  11. Gallegos, A. M., and M. J. Bevan. 2006. Central tolerance: good but imperfect. Immunol Rev 209: 290-296.
  12. Ueno, T., F. Saito, D. H. Gray, S. Kuse, K. Hieshima, H. Nakano, T. Kakiuchi, M. Lipp, R. L. Boyd, and Y. Takahama. 2004. CCR7 signals are essential for cortex-medulla migration of developing thymocytes. J Exp Med 200: 493-505.
  13. Liston, A., S. Lesage, J. Wilson, L. Peltonen, and C. C. Goodnow. 2003. Aire regulates negative selection of organ-specific T cells. Nat Immunol 4: 350-354.
  14. Anderson, M. S., E. S. Venanzi, L. Klein, Z. Chen, S. P. Berzins, S. J. Turley, H. von Boehmer, R. Bronson, A. Dierich, C. Benoist, and D. Mathis. 2002. Projection of an immunological self shadow within the thymus by the aire protein. Science 298: 1395- 1401.
  15. Giraud, M., H. Yoshida, J. Abramson, P. B. Rahl, R. A. Young, D. Mathis, and C. Benoist. 2012. Aire unleashes stalled RNA polymerase to induce ectopic gene expression in thymic epithelial cells. Proc Natl Acad Sci U S A 109: 535-540.
  16. Strasser, A., A. W. Harris, H. von Boehmer, and S. Cory. 1994. Positive and negative selection of T cells in T-cell receptor transgenic mice expressing a bcl-2 transgene. Proc Natl Acad Sci U S A 91: 1376-1380.
  17. Sugawara, T., T. Moriguchi, E. Nishida, and Y. Takahama. 1998. Differential roles of ERK and p38 MAP kinase pathways in positive and negative selection of T lymphocytes. Immunity 9: 565-574.
  18. Buhlmann, J. E., S. K. Elkin, and A. H. Sharpe. 2003. A role for the B7-1/B7- 2:CD28/CTLA-4 pathway during negative selection. J Immunol 170: 5421-5428.
  19. Gallegos, A. M., and M. J. Bevan. 2004. Central tolerance to tissue-specific antigens mediated by direct and indirect antigen presentation. J Exp Med 200: 1039-1049.
  20. Brocker, T., M. Riedinger, and K. Karjalainen. 1997. Targeted expression of major histocompatibility complex (MHC) class II molecules demonstrates that dendritic cells can induce negative but not positive selection of thymocytes in vivo. J Exp Med 185: 541-550.
  21. Hadeiba, H., K. Lahl, A. Edalati, C. Oderup, A. Habtezion, R. Pachynski, L. Nguyen, A. Ghodsi, S. Adler, and E. C. Butcher. 2012. Plasmacytoid dendritic cells transport peripheral antigens to the thymus to promote central tolerance. Immunity 36: 438-450.
  22. Lee, J. W., M. Epardaud, J. Sun, J. E. Becker, A. C. Cheng, A. R. Yonekura, J. K. Heath, and S. J. Turley. 2007. Peripheral antigen display by lymph node stroma promotes T cell tolerance to intestinal self. Nat Immunol 8: 181-190.
  23. Kisielow, P., H. Bluthmann, U. D. Staerz, M. Steinmetz, and H. von Boehmer. 1988. Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes. Nature 333: 742-746.
  24. Nagamine, K., P. Peterson, H. S. Scott, J. Kudoh, S. Minoshima, M. Heino, K. J. Krohn, M. D. Lalioti, P. E. Mullis, S. E. Antonarakis, K. Kawasaki, S. Asakawa, F. Ito, and N. Shimizu. 1997. Positional cloning of the APECED gene. Nature genetics 17: 393-398.
  25. Shevach, E. M. 2009. Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity 30: 636-645.
  26. Brunkow, M. E., E. W. Jeffery, K. A. Hjerrild, B. Paeper, L. B. Clark, S. A. Yasayko, J. E. Wilkinson, D. Galas, S. F. Ziegler, and F. Ramsdell. 2001. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nature genetics 27: 68-73.
  27. Cowan, J. E., S. M. Parnell, K. Nakamura, J. H. Caamano, P. J. Lane, E. J. Jenkinson, W. E. Jenkinson, and G. Anderson. 2013. The thymic medulla is required for Foxp3+ regulatory but not conventional CD4+ thymocyte development. J Exp Med 210: 675-681.
  28. Coquet, J. M., J. C. Ribot, N. Babala, S. Middendorp, G. van der Horst, Y. Xiao, J. F. Neves, D. Fonseca-Pereira, H. Jacobs, D. J. Pennington, B. Silva-Santos, and J. Borst. 2013. Epithelial and dendritic cells in the thymic medulla promote CD4+Foxp3+ regulatory T cell development via the CD27-CD70 pathway. J Exp Med 210: 715-728.
  29. Cloosen, S., J. Arnold, M. Thio, G. M. Bos, B. Kyewski, and W. T. Germeraad. 2007. Expression of tumor-associated differentiation antigens, MUC1 glycoforms and CEA, in human thymic epithelial cells: implications for self-tolerance and tumor therapy. Cancer Res 67: 3919-3926.
  30. Liu, G. Y., P. J. Fairchild, R. M. Smith, J. R. Prowle, D. Kioussis, and D. C. Wraith. 1995. Low avidity recognition of self-antigen by T cells permits escape from central tolerance. Immunity 3: 407-415.
  31. Zehn, D., and M. J. Bevan. 2006. T cells with low avidity for a tissue-restricted antigen routinely evade central and peripheral tolerance and cause autoimmunity. Immunity 25: 261-270.
  32. Marelli-Berg, F. M., L. Cannella, F. Dazzi, and V. Mirenda. 2008. The highway code of T cell trafficking. The Journal of pathology 214: 179-189.
  33. Fadok, V. A., D. R. Voelker, P. A. Campbell, J. J. Cohen, D. L. Bratton, and P. M. Henson. 1992. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 148: 2207-2216.
  34. Elliott, M. R., and K. S. Ravichandran. 2010. Clearance of apoptotic cells: implications in health and disease. The Journal of cell biology 189: 1059-1070.
  35. Chung, E. Y., J. Liu, Y. Homma, Y. Zhang, A. Brendolan, M. Saggese, J. Han, R. Silverstein, L. Selleri, and X. Ma. 2007. Interleukin-10 expression in macrophages during phagocytosis of apoptotic cells is mediated by homeodomain proteins Pbx1 and Prep-1. Immunity 27: 952-964.
  36. Xiao, Y. Q., C. G. Freire-de-Lima, W. P. Schiemann, D. L. Bratton, R. W. Vandivier, and P. M. Henson. 2008. Transcriptional and translational regulation of TGF-beta production in response to apoptotic cells. J Immunol 181: 3575-3585.
  37. Chen, L., and D. B. Flies. 2013. Molecular mechanisms of T cell co-stimulation and co- inhibition. Nat Rev Immunol 13: 227-242.
  38. Mueller, D. L., M. K. Jenkins, and R. H. Schwartz. 1989. Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu Rev Immunol 7: 445-480.
  39. Krummel, M. F., and J. P. Allison. 1996. CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J Exp Med 183: 2533-2540.
  40. Walunas, T. L., D. J. Lenschow, C. Y. Bakker, P. S. Linsley, G. J. Freeman, J. M. Green, C. B. Thompson, and J. A. Bluestone. 1994. CTLA-4 can function as a negative regulator of T cell activation. Immunity 1: 405-413.
  41. Keir, M. E., S. C. Liang, I. Guleria, Y. E. Latchman, A. Qipo, L. A. Albacker, M. Koulmanda, G. J. Freeman, M. H. Sayegh, and A. H. Sharpe. 2006. Tissue expression of PD-L1 mediates peripheral T cell tolerance. J Exp Med 203: 883-895.
  42. Sakaguchi, S., N. Sakaguchi, M. Asano, M. Itoh, and M. Toda. 1995. Immunologic self- tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155: 1151-1164.
  43. Bennett, C. L., J. Christie, F. Ramsdell, M. E. Brunkow, P. J. Ferguson, L. Whitesell, T. E. Kelly, F. T. Saulsbury, P. F. Chance, and H. D. Ochs. 2001. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nature genetics 27: 20-21.
  44. Josefowicz, S. Z., L. F. Lu, and A. Y. Rudensky. 2012. Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol 30: 531-564.
  45. Kretschmer, K., I. Apostolou, D. Hawiger, K. Khazaie, M. C. Nussenzweig, and H. von Boehmer. 2005. Inducing and expanding regulatory T cell populations by foreign antigen. Nat Immunol 6: 1219-1227.
  46. Chen, W., W. Jin, N. Hardegen, K. J. Lei, L. Li, N. Marinos, G. McGrady, and S. M. Wahl. 2003. Conversion of peripheral CD4+CD25-naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198: 1875-1886.
  47. Davidson, T. S., R. J. DiPaolo, J. Andersson, and E. M. Shevach. 2007. Cutting Edge: IL- 2 is essential for TGF-beta-mediated induction of Foxp3+ T regulatory cells. J Immunol 178: 4022-4026.
  48. Pandiyan, P., L. Zheng, S. Ishihara, J. Reed, and M. J. Lenardo. 2007. CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat Immunol 8: 1353-1362.
  49. Qureshi, O. S., Y. Zheng, K. Nakamura, K. Attridge, C. Manzotti, E. M. Schmidt, J. Baker, L. E. Jeffery, S. Kaur, Z. Briggs, T. Z. Hou, C. E. Futter, G. Anderson, L. S. Walker, and D. M. Sansom. 2011. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 332: 600-603.
  50. Bopp, T., C. Becker, M. Klein, S. Klein-Hessling, A. Palmetshofer, E. Serfling, V. Heib, M. Becker, J. Kubach, S. Schmitt, S. Stoll, H. Schild, M. S. Staege, M. Stassen, H. Jonuleit, and E. Schmitt. 2007. Cyclic adenosine monophosphate is a key component of regulatory T cell-mediated suppression. J Exp Med 204: 1303-1310.
  51. Collison, L. W., C. J. Workman, T. T. Kuo, K. Boyd, Y. Wang, K. M. Vignali, R. Cross, D. Sehy, R. S. Blumberg, and D. A. Vignali. 2007. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 450: 566-569.
  52. Gondek, D. C., V. Devries, E. C. Nowak, L. F. Lu, K. A. Bennett, Z. A. Scott, and R. J. Noelle. 2008. Transplantation survival is maintained by granzyme B+ regulatory cells and adaptive regulatory T cells. J Immunol 181: 4752-4760.
  53. Gondek, D. C., L. F. Lu, S. A. Quezada, S. Sakaguchi, and R. J. Noelle. 2005. Cutting edge: contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J Immunol 174: 1783-1786.
  54. Steinman, R. M., and Z. A. Cohn. 1973. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 137: 1142-1162.
  55. Steinman, R. M., D. S. Lustig, and Z. A. Cohn. 1974. Identification of a novel cell type in peripheral lymphoid organs of mice. 3. Functional properties in vivo. J Exp Med 139: 1431-1445.
  56. Steinman, R. M., and Z. A. Cohn. 1974. Identification of a novel cell type in peripheral lymphoid organs of mice. II. Functional properties in vitro. J Exp Med 139: 380-397.
  57. Steinman, R. M., and M. D. Witmer. 1978. Lymphoid dendritic cells are potent stimulators of the primary mixed leukocyte reaction in mice. Proc Natl Acad Sci U S A 75: 5132-5136.
  58. Janeway, C. A., Jr. 1989. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harbor symposia on quantitative biology 54 Pt 1: 1-13.
  59. Sozzani, S., F. Sallusto, W. Luini, D. Zhou, L. Piemonti, P. Allavena, J. Van Damme, S. Valitutti, A. Lanzavecchia, and A. Mantovani. 1995. Migration of dendritic cells in response to formyl peptides, C5a, and a distinct set of chemokines. J Immunol 155: 3292- 3295.
  60. Lemaitre, B., E. Nicolas, L. Michaut, J. M. Reichhart, and J. A. Hoffmann. 1996. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86: 973-983.
  61. Medzhitov, R., P. Preston-Hurlburt, and C. A. Janeway, Jr. 1997. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388: 394- 397.
  62. Banchereau, J., and R. M. Steinman. 1998. Dendritic cells and the control of immunity. Nature 392: 245-252.
  63. Trombetta, E. S., M. Ebersold, W. Garrett, M. Pypaert, and I. Mellman. 2003. Activation of lysosomal function during dendritic cell maturation. Science 299: 1400-1403.
  64. Takeuchi, O., and S. Akira. 2010. Pattern recognition receptors and inflammation. Cell 140: 805-820.
  65. Ohl, L., M. Mohaupt, N. Czeloth, G. Hintzen, Z. Kiafard, J. Zwirner, T. Blankenstein, G. Henning, and R. Forster. 2004. CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions. Immunity 21: 279-288.
  66. Shortman, K., and S. H. Naik. 2007. Steady-state and inflammatory dendritic-cell development. Nat Rev Immunol 7: 19-30.
  67. Wilson, N. S., D. El-Sukkari, G. T. Belz, C. M. Smith, R. J. Steptoe, W. R. Heath, K. Shortman, and J. A. Villadangos. 2003. Most lymphoid organ dendritic cell types are phenotypically and functionally immature. Blood 102: 2187-2194.
  68. Vremec, D., J. Pooley, H. Hochrein, L. Wu, and K. Shortman. 2000. CD4 and CD8 expression by dendritic cell subtypes in mouse thymus and spleen. J Immunol 164: 2978- 2986.
  69. den Haan, J. M., S. M. Lehar, and M. J. Bevan. 2000. CD8(+) but not CD8(-) dendritic cells cross-prime cytotoxic T cells in vivo. J Exp Med 192: 1685-1696.
  70. Dudziak, D., A. O. Kamphorst, G. F. Heidkamp, V. R. Buchholz, C. Trumpfheller, S. Yamazaki, C. Cheong, K. Liu, H. W. Lee, C. G. Park, R. M. Steinman, and M. C. Nussenzweig. 2007. Differential antigen processing by dendritic cell subsets in vivo. Science 315: 107-111.
  71. Hildner, K., B. T. Edelson, W. E. Purtha, M. Diamond, H. Matsushita, M. Kohyama, B. Calderon, B. U. Schraml, E. R. Unanue, M. S. Diamond, R. D. Schreiber, T. L. Murphy, and K. M. Murphy. 2008. Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity. Science 322: 1097-1100.
  72. Granucci, F., C. Vizzardelli, N. Pavelka, S. Feau, M. Persico, E. Virzi, M. Rescigno, G. Moro, and P. Ricciardi-Castagnoli. 2001. Inducible IL-2 production by dendritic cells revealed by global gene expression analysis. Nat Immunol 2: 882-888.
  73. Heufler, C., F. Koch, U. Stanzl, G. Topar, M. Wysocka, G. Trinchieri, A. Enk, R. M. Steinman, N. Romani, and G. Schuler. 1996. Interleukin-12 is produced by dendritic cells and mediates T helper 1 development as well as interferon-gamma production by T helper 1 cells. Eur J Immunol 26: 659-668.
  74. Harrington, L. E., R. D. Hatton, P. R. Mangan, H. Turner, T. L. Murphy, K. M. Murphy, and C. T. Weaver. 2005. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6: 1123-1132.
  75. Akbari, O., R. H. DeKruyff, and D. T. Umetsu. 2001. Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. Nat Immunol 2: 725-731.
  76. Yamazaki, S., D. Dudziak, G. F. Heidkamp, C. Fiorese, A. J. Bonito, K. Inaba, M. C. Nussenzweig, and R. M. Steinman. 2008. CD8+ CD205+ splenic dendritic cells are specialized to induce Foxp3+ regulatory T cells. J Immunol 181: 6923-6933.
  77. Coombes, J. L., K. R. Siddiqui, C. V. Arancibia-Carcamo, J. Hall, C. M. Sun, Y. Belkaid, and F. Powrie. 2007. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med 204: 1757-1764.
  78. Asselin-Paturel, C., A. Boonstra, M. Dalod, I. Durand, N. Yessaad, C. Dezutter- Dambuyant, A. Vicari, A. O'Garra, C. Biron, F. Briere, and G. Trinchieri. 2001. Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nat Immunol 2: 1144-1150.
  79. Tel, J., A. J. A. Lambeck, L. J. Cruz, P. J. Tacken, I. J. M. de Vries, and C. G. Figdor. 2010. Human plasmacytoid dendritic cells phagocytose, process, and present exogenous particulate antigen. J Immunol 184: 4276-4283.
  80. Auffray, C., M. H. Sieweke, and F. Geissmann. 2009. Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol 27: 669-692.
  81. Gottschalk, R. A., M. M. Hathorn, H. Beuneu, E. Corse, M. L. Dustin, G. Altan-Bonnet, and J. P. Allison. 2012. Distinct influences of peptide-MHC quality and quantity on in vivo T-cell responses. Proc Natl Acad Sci U S A 109: 881-886.
  82. Dick, T. P., A. K. Nussbaum, M. Deeg, W. Heinemeyer, M. Groll, M. Schirle, W. Keilholz, S. Stevanovic, D. H. Wolf, R. Huber, H. G. Rammensee, and H. Schild. 1998. Contribution of proteasomal beta-subunits to the cleavage of peptide substrates analyzed with yeast mutants. J Biol Chem 273: 25637-25646.
  83. Aki, M., N. Shimbara, M. Takashina, K. Akiyama, S. Kagawa, T. Tamura, N. Tanahashi, T. Yoshimura, K. Tanaka, and A. Ichihara. 1994. Interferon-gamma induces different subunit organizations and functional diversity of proteasomes. J Biochem 115: 257-269.
  84. Vyas, J. M., A. G. Van der Veen, and H. L. Ploegh. 2008. The known unknowns of antigen processing and presentation. Nat Rev Immunol 8: 607-618.
  85. Kienast, A., M. Preuss, M. Winkler, and T. P. Dick. 2007. Redox regulation of peptide receptivity of major histocompatibility complex class I molecules by ERp57 and tapasin. Nat Immunol 8: 864-872.
  86. Reits, E., J. Neijssen, C. Herberts, W. Benckhuijsen, L. Janssen, J. W. Drijfhout, and J. Neefjes. 2004. A major role for TPPII in trimming proteasomal degradation products for MHC class I antigen presentation. Immunity 20: 495-506.
  87. Parmentier, N., V. Stroobant, D. Colau, P. de Diesbach, S. Morel, J. Chapiro, P. van Endert, and B. J. Van den Eynde. 2010. Production of an antigenic peptide by insulin- degrading enzyme. Nat Immunol 11: 449-454.
  88. Nakagawa, T. Y., W. H. Brissette, P. D. Lira, R. J. Griffiths, N. Petrushova, J. Stock, J. D. McNeish, S. E. Eastman, E. D. Howard, S. R. Clarke, E. F. Rosloniec, E. A. Elliott, and A. Y. Rudensky. 1999. Impaired invariant chain degradation and antigen presentation and diminished collagen-induced arthritis in cathepsin S null mice. Immunity 10: 207- 217.
  89. Weber, D. A., B. D. Evavold, and P. E. Jensen. 1996. Enhanced dissociation of HLA- DR-bound peptides in the presence of HLA-DM. Science 274: 618-620.
  90. Jensen, P. E. 2007. Recent advances in antigen processing and presentation. Nat Immunol 8: 1041-1048.
  91. Hsieh, C. S., P. deRoos, K. Honey, C. Beers, and A. Y. Rudensky. 2002. A role for cathepsin L and cathepsin S in peptide generation for MHC class II presentation. J Immunol 168: 2618-2625.
  92. Deussing, J., W. Roth, P. Saftig, C. Peters, H. L. Ploegh, and J. A. Villadangos. 1998. Cathepsins B and D are dispensable for major histocompatibility complex class II- mediated antigen presentation. Proc Natl Acad Sci USA 95: 4516-4521.
  93. Antoniou, A. N., S. L. Blackwood, D. Mazzeo, and C. Watts. 2000. Control of antigen presentation by a single protease cleavage site. Immunity 12: 391-398.
  94. Moss, C. X., J. A. Villadangos, and C. Watts. 2005. Destructive potential of the aspartyl protease cathepsin D in MHC class II-restricted antigen processing. Eur J Immunol 35: 3442-3451.
  95. Manoury, B., D. Mazzeo, L. Fugger, N. Viner, M. Ponsford, H. Streeter, G. Mazza, D. C. Wraith, and C. Watts. 2002. Destructive processing by asparagine endopeptidase limits presentation of a dominant T cell epitope in MBP. Nat Immunol 3: 169-174.
  96. Jancic, C., A. Savina, C. Wasmeier, T. Tolmachova, J. El-Benna, P. M. Dang, S. Pascolo, M. A. Gougerot-Pocidalo, G. Raposo, M. C. Seabra, and S. Amigorena. 2007. Rab27a regulates phagosomal pH and NADPH oxidase recruitment to dendritic cell phagosomes. Nat Cell Biol 9: 367-378.
  97. Fissolo, N., M. Kraus, M. Reich, M. Ayturan, H. Overkleeft, C. Driessen, and R. Weissert. 2008. Dual inhibition of proteasomal and lysosomal proteolysis ameliorates autoimmune central nervous system inflammation. Eur J Immunol 38: 2401-2411.
  98. Saegusa, K., N. Ishimaru, K. Yanagi, R. Arakaki, K. Ogawa, I. Saito, N. Katunuma, and Y. Hayashi. 2002. Cathepsin S inhibitor prevents autoantigen presentation and autoimmunity. J Clin Invest 110: 361-369.
  99. Dominiecki, M. E., G. L. Beatty, Z. K. Pan, P. Neeson, and Y. Paterson. 2005. Tumor sensitivity to IFN-gamma is required for successful antigen-specific immunotherapy of a transplantable mouse tumor model for HPV-transformed tumors. Cancer Immunol Immunother 54: 477-488.
  100. Propper, D. J., D. Chao, J. P. Braybrooke, P. Bahl, P. Thavasu, F. Balkwill, H. Turley, N. Dobbs, K. Gatter, D. C. Talbot, A. L. Harris, and T. S. Ganesan. 2003. Low-dose IFN- gamma induces tumor MHC expression in metastatic malignant melanoma. Clin Cancer Res 9: 84-92.
  101. Manicassamy, S., and B. Pulendran. 2011. Dendritic cell control of tolerogenic responses. Immunological reviews 241: 206-227.
  102. Ohnmacht, C., A. Pullner, S. B. King, I. Drexler, S. Meier, T. Brocker, and D. Voehringer. 2009. Constitutive ablation of dendritic cells breaks self-tolerance of CD4 T cells and results in spontaneous fatal autoimmunity. J Exp Med 206: 549-559.
  103. Birnberg, T., L. Bar-On, A. Sapoznikov, M. L. Caton, L. Cervantes-Barragan, D. Makia, R. Krauthgamer, O. Brenner, B. Ludewig, D. Brockschnieder, D. Riethmacher, B. Reizis, and S. Jung. 2008. Lack of conventional dendritic cells is compatible with normal development and T cell homeostasis, but causes myeloid proliferative syndrome. Immunity 29: 986-997.
  104. Steinman, R. M., and M. C. Nussenzweig. 2002. Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc Natl Acad Sci U S A 99: 351-358.
  105. Hawiger, D., K. Inaba, Y. Dorsett, M. Guo, K. Mahnke, M. Rivera, J. V. Ravetch, R. M. Steinman, and M. C. Nussenzweig. 2001. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J Exp Med 194: 769-779.
  106. Turner, M. S., L. P. Kane, and P. A. Morel. 2009. Dominant role of antigen dose in CD4+Foxp3+ regulatory T cell induction and expansion. J Immunol 183: 4895-4903.
  107. Hadeiba, H., T. Sato, A. Habtezion, C. Oderup, J. Pan, and E. C. Butcher. 2008. CCR9 expression defines tolerogenic plasmacytoid dendritic cells able to suppress acute graft- versus-host disease. Nat Immunol 9: 1253-1260.
  108. Goubier, A., B. Dubois, H. Gheit, G. Joubert, F. Villard-Truc, C. Asselin-Paturel, G. Trinchieri, and D. Kaiserlian. 2008. Plasmacytoid dendritic cells mediate oral tolerance. Immunity 29: 464-475.
  109. Belz, G. T., G. M. Behrens, C. M. Smith, J. F. Miller, C. Jones, K. Lejon, C. G. Fathman, S. N. Mueller, K. Shortman, F. R. Carbone, and W. R. Heath. 2002. The CD8alpha(+) dendritic cell is responsible for inducing peripheral self-tolerance to tissue-associated antigens. J Exp Med 196: 1099-1104.
  110. Bonifaz, L., D. Bonnyay, K. Mahnke, M. Rivera, M. C. Nussenzweig, and R. M. Steinman. 2002. Efficient targeting of protein antigen to the dendritic cell receptor DEC- 205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J Exp Med 196: 1627-1638.
  111. Munn, D. H., M. D. Sharma, J. R. Lee, K. G. Jhaver, T. S. Johnson, D. B. Keskin, B. Marshall, P. Chandler, S. J. Antonia, R. Burgess, C. L. Slingluff, Jr., and A. L. Mellor. 2002. Potential regulatory function of human dendritic cells expressing indoleamine 2,3- dioxygenase. Science 297: 1867-1870.
  112. Baban, B., A. M. Hansen, P. R. Chandler, A. Manlapat, A. Bingaman, D. J. Kahler, D. H. Munn, and A. L. Mellor. 2005. A minor population of splenic dendritic cells expressing CD19 mediates IDO-dependent T cell suppression via type I IFN signaling following B7 ligation. Int Immunol 17: 909-919.
  113. Laffont, S., K. R. Siddiqui, and F. Powrie. 2010. Intestinal inflammation abrogates the tolerogenic properties of MLN CD103+ dendritic cells. Eur J Immunol 40: 1877-1883.
  114. Wallet, M. A., P. Sen, R. R. Flores, Y. Wang, Z. Yi, Y. Huang, C. E. Mathews, H. S. Earp, G. Matsushima, B. Wang, and R. Tisch. 2008. MerTK is required for apoptotic cell-induced T cell tolerance. J Exp Med 205: 219-232.
  115. Iwasaki, A., and B. L. Kelsall. 1999. Freshly isolated Peyer's patch, but not spleen, dendritic cells produce interleukin 10 and induce the differentiation of T helper type 2 cells. J Exp Med 190: 229-239.
  116. Laouar, Y., T. Town, D. Jeng, E. Tran, Y. Wan, V. K. Kuchroo, and R. A. Flavell. 2008. TGF-beta signaling in dendritic cells is a prerequisite for the control of autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 105: 10865-10870.
  117. Hall, J. A., J. R. Grainger, S. P. Spencer, and Y. Belkaid. 2011. The role of retinoic acid in tolerance and immunity. Immunity 35: 13-22.
  118. Chang, J., S. Thangamani, M. H. Kim, B. Ulrich, S. M. Morris, Jr., and C. H. Kim. 2013. Retinoic acid promotes the development of Arg1-expressing dendritic cells for the regulation of T-cell differentiation. Eur J Immunol 43: 967-978.
  119. Rescigno, M., M. Martino, C. L. Sutherland, M. R. Gold, and P. Ricciardi-Castagnoli. 1998. Dendritic cell survival and maturation are regulated by different signaling pathways. J Exp Med 188: 2175-2180.
  120. Meredith, M. M., K. Liu, A. O. Kamphorst, J. Idoyaga, A. Yamane, P. Guermonprez, S. Rihn, K. H. Yao, I. T. Silva, T. Y. Oliveira, D. Skokos, R. Casellas, and M. C. Nussenzweig. 2012. Zinc finger transcription factor zDC is a negative regulator required to prevent activation of classical dendritic cells in the steady state. J Exp Med 209: 1583- 1593.
  121. Satpathy, A. T., W. Kc, J. C. Albring, B. T. Edelson, N. M. Kretzer, D. Bhattacharya, T. L. Murphy, and K. M. Murphy. 2012. Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages. J Exp Med.
  122. Manicassamy, S., B. Reizis, R. Ravindran, H. Nakaya, R. M. Salazar-Gonzalez, Y.-C. Wang, and B. Pulendran. 2010. Activation of beta-catenin in dendritic cells regulates immunity versus tolerance in the intestine. Science 329: 849-853.
  123. Villagra, A., F. Cheng, H. W. Wang, I. Suarez, M. Glozak, M. Maurin, D. Nguyen, K. L. Wright, P. W. Atadja, K. Bhalla, J. Pinilla-Ibarz, E. Seto, and E. M. Sotomayor. 2009. The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance. Nat Immunol 10: 92-100.
  124. Melillo, J. A., L. Song, G. Bhagat, A. B. Blazquez, C. R. Plumlee, C. Lee, C. Berin, B. Reizis, and C. Schindler. 2010. Dendritic cell (DC)-specific targeting reveals Stat3 as a negative regulator of DC function. J Immunol 184: 2638-2645.
  125. Yoshimura, A., T. Naka, and M. Kubo. 2007. SOCS proteins, cytokine signalling and immune regulation. Nat Rev Immunol 7: 454-465.
  126. Nakagawa, R., T. Naka, H. Tsutsui, M. Fujimoto, A. Kimura, T. Abe, E. Seki, S. Sato, O. Takeuchi, K. Takeda, S. Akira, K. Yamanishi, I. Kawase, K. Nakanishi, and T. Kishimoto. 2002. SOCS-1 participates in negative regulation of LPS responses. Immunity 17: 677-687.
  127. Kantoff, P. W., C. S. Higano, N. D. Shore, E. R. Berger, E. J. Small, D. F. Penson, C. H. Redfern, A. C. Ferrari, R. Dreicer, R. B. Sims, Y. Xu, M. W. Frohlich, and P. F. Schellhammer. 2010. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363: 411-422.
  128. Palucka, K., and J. Banchereau. 2012. Cancer immunotherapy via dendritic cells. Nat Rev Cancer 12: 265-277.
  129. Okada, H., P. Kalinski, R. Ueda, A. Hoji, G. Kohanbash, T. E. Donegan, A. H. Mintz, J. A. Engh, D. L. Bartlett, C. K. Brown, H. Zeh, M. P. Holtzman, T. A. Reinhart, T. L. Whiteside, L. H. Butterfield, R. L. Hamilton, D. M. Potter, I. F. Pollack, A. M. Salazar, and F. S. Lieberman. 2011. Induction of CD8+ T-cell responses against novel glioma- associated antigen peptides and clinical activity by vaccinations with {alpha}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J Clin Oncol 29: 330-336.
  130. Lepisto, A. J., A. J. Moser, H. Zeh, K. Lee, D. Bartlett, J. R. McKolanis, B. A. Geller, A. Schmotzer, D. P. Potter, T. Whiteside, O. J. Finn, and R. K. Ramanathan. 2008. A phase I/II study of a MUC1 peptide pulsed autologous dendritic cell vaccine as adjuvant therapy in patients with resected pancreatic and biliary tumors. Cancer Ther 6: 955-964.
  131. Garcia, F., N. Climent, L. Assoumou, C. Gil, N. Gonzalez, J. Alcami, A. Leon, J. Romeu, J. Dalmau, J. Martinez-Picado, J. Lifson, B. Autran, D. Costagliola, B. Clotet, J. M. Gatell, M. Plana, and T. Gallart. 2011. A therapeutic dendritic cell-based vaccine for HIV-1 infection. The Journal of infectious diseases 203: 473-478.
  132. Encke, J., J. Findeklee, J. Geib, E. Pfaff, and W. Stremmel. 2005. Prophylactic and therapeutic vaccination with dendritic cells against hepatitis C virus infection. Clinical and experimental immunology 142: 362-369.
  133. Turnquist, H. R., G. Raimondi, A. F. Zahorchak, R. T. Fischer, Z. Wang, and A. W. Thomson. 2007. Rapamycin-conditioned dendritic cells are poor stimulators of allogeneic CD4+ T cells, but enrich for antigen-specific Foxp3+ T regulatory cells and promote organ transplant tolerance. J Immunol 178: 7018-7031.
  134. Giannoukakis, N., B. Phillips, D. Finegold, J. Harnaha, and M. Trucco. 2011. Phase I (safety) study of autologous tolerogenic dendritic cells in type 1 diabetic patients. Diabetes care 34: 2026-2032.
  135. Popov, I., M. Li, X. Zheng, H. San, X. Zhang, T. E. Ichim, M. Suzuki, B. Feng, C. Vladau, R. Zhong, B. Garcia, G. Strejan, R. D. Inman, and W. P. Min. 2006. Preventing autoimmune arthritis using antigen-specific immature dendritic cells: a novel tolerogenic vaccine. Arthritis research & therapy 8: R141.
  136. Morelli, A. E., and A. W. Thomson. 2007. Tolerogenic dendritic cells and the quest for transplant tolerance. Nat Rev Immunol 7: 610-621.
  137. Bonifaz, L. C., D. P. Bonnyay, A. Charalambous, D. I. Darguste, S. Fujii, H. Soares, M. K. Brimnes, B. Moltedo, T. M. Moran, and R. M. Steinman. 2004. In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J Exp Med 199: 815-824.
  138. Wei, H., S. Wang, D. Zhang, S. Hou, W. Qian, B. Li, H. Guo, G. Kou, J. He, H. Wang, and Y. Guo. 2009. Targeted delivery of tumor antigens to activated dendritic cells via CD11c molecules induces potent antitumor immunity in mice. Clin Cancer Res 15: 4612- 4621.
  139. Dunne, A., N. A. Marshall, and K. H. Mills. 2011. TLR based therapeutics. Current opinion in pharmacology 11: 404-411.
  140. Diehl, L., A. T. den Boer, S. P. Schoenberger, E. I. van der Voort, T. N. Schumacher, C. J. Melief, R. Offringa, and R. E. Toes. 1999. CD40 activation in vivo overcomes peptide- induced peripheral cytotoxic T-lymphocyte tolerance and augments anti-tumor vaccine efficacy. Nat Med 5: 774-779.
  141. Li, D., G. Romain, A. L. Flamar, D. Duluc, M. Dullaers, X. H. Li, S. Zurawski, N. Bosquet, A. K. Palucka, R. Le Grand, A. O'Garra, G. Zurawski, J. Banchereau, and S. Oh. 2012. Targeting self-and foreign antigens to dendritic cells via DC-ASGPR generates IL-10-producing suppressive CD4+ T cells. J Exp Med 209: 109-121.
  142. Rabinovich, G. A., D. Gabrilovich, and E. M. Sotomayor. 2007. Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 25: 267-296.
  143. Iwai, Y., M. Ishida, Y. Tanaka, T. Okazaki, T. Honjo, and N. Minato. 2002. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A 99: 12293-12297.
  144. Marincola, F. M., E. M. Jaffee, D. J. Hicklin, and S. Ferrone. 2000. Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol 74: 181-273.
  145. Youn, J. I., S. Nagaraj, M. Collazo, and D. I. Gabrilovich. 2008. Subsets of myeloid- derived suppressor cells in tumor-bearing mice. J Immunol 181: 5791-5802.
  146. Filipazzi, P., R. Valenti, V. Huber, L. Pilla, P. Canese, M. Iero, C. Castelli, L. Mariani, G. Parmiani, and L. Rivoltini. 2007. Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte- macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol 25: 2546- 2553.
  147. Gabrilovich, D. I., S. Ostrand-Rosenberg, and V. Bronte. 2012. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12: 253-268.
  148. Gabrilovich, D. I., and S. Nagaraj. 2009. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9: 162-174.
  149. Gabrilovich, D. I., M. P. Velders, E. M. Sotomayor, and W. M. Kast. 2001. Mechanism of immune dysfunction in cancer mediated by immature Gr-1+ myeloid cells. J Immunol 166: 5398-5406.
  150. Schmielau, J., and O. J. Finn. 2001. Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients. Cancer Res 61: 4756-4760.
  151. Huang, B., P. Y. Pan, Q. Li, A. I. Sato, D. E. Levy, J. Bromberg, C. M. Divino, and S. H. Chen. 2006. Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 66: 1123-1131.
  152. Farkas, A. M., and O. J. Finn. 2010. Vaccines based on abnormal self-antigens as tumor- associated antigens: immune regulation. Semin Immunol 22: 125-131.
  153. Troy, A. J., K. L. Summers, P. J. Davidson, C. H. Atkinson, and D. N. Hart. 1998. Minimal recruitment and activation of dendritic cells within renal cell carcinoma. Clin Cancer Res 4: 585-593.
  154. Zhang, X., H. Huang, J. Yuan, D. Sun, W. S. Hou, J. Gordon, and J. Xiang. 2005. CD4-8- dendritic cells prime CD4+ T regulatory 1 cells to suppress antitumor immunity. J Immunol 175: 2931-2937.
  155. Dumitriu, I. E., D. R. Dunbar, S. E. Howie, T. Sethi, and C. D. Gregory. 2009. Human dendritic cells produce TGF-beta 1 under the influence of lung carcinoma cells and prime the differentiation of CD4+CD25+Foxp3+ regulatory T cells. J Immunol 182: 2795-2807.
  156. Yang, H., A. Guimaraes-Walker, S. Hibbs, T. Dong, A. Stacey, P. Borrow, T. Hanke, M. P. Davenport, A. McMichael, and L. Dorrell. 2009. Interleukin-10 responses to therapeutic vaccination during highly active antiretroviral therapy and after analytical therapy interruption. AIDS 23: 2226-2230.
  157. Chen, Y. X., K. Man, G. S. Ling, Y. Chen, B. S. Sun, Q. Cheng, O. H. Wong, C. K. Lo, I. O. Ng, L. C. Chan, G. K. Lau, C. L. Lin, F. Huang, and F. P. Huang. 2007. A crucial role for dendritic cell (DC) IL-10 in inhibiting successful DC-based immunotherapy: superior antitumor immunity against hepatocellular carcinoma evoked by DC devoid of IL-10. J Immunol 179: 6009-6015.
  158. Yang, M., C. Ma, S. Liu, Q. Shao, W. Gao, B. Song, J. Sun, Q. Xie, Y. Zhang, A. Feng, Y. Liu, W. Hu, and X. Qu. 2010. HIF-dependent induction of adenosine receptor A2b skews human dendritic cells to a Th2-stimulating phenotype under hypoxia. Immunology and cell biology 88: 165-171.
  159. Elia, A. R., P. Cappello, M. Puppo, T. Fraone, C. Vanni, A. Eva, T. Musso, F. Novelli, L. Varesio, and M. Giovarelli. 2008. Human dendritic cells differentiated in hypoxia down- modulate antigen uptake and change their chemokine expression profile. J Leukoc Biol 84: 1472-1482.
  160. Kufe, D. W. 2009. Mucins in cancer: function, prognosis and therapy. Nat Rev Cancer 9: 874-885.
  161. McAuley, J. L., S. K. Linden, C. W. Png, R. M. King, H. L. Pennington, S. J. Gendler, T. H. Florin, G. R. Hill, V. Korolik, and M. A. McGuckin. 2007. MUC1 cell surface mucin is a critical element of the mucosal barrier to infection. J Clin Invest 117: 2313-2324.
  162. Hiltbold, E. M., A. M. Vlad, P. Ciborowski, S. C. Watkins, and O. J. Finn. 2000. The mechanism of unresponsiveness to circulating tumor antigen MUC1 is a block in intracellular sorting and processing by dendritic cells. J Immunol 165: 3730-3741.
  163. Vlad, A. M., J. C. Kettel, N. M. Alajez, C. A. Carlos, and O. J. Finn. 2004. MUC1 immunobiology: from discovery to clinical applications. Adv Immunol 82: 249-293.
  164. Kimura, T., and O. J. Finn. 2013. MUC1 immunotherapy is here to stay. Expert Opin Biol Ther 13: 35-49.
  165. Farkas, A. M., and O. J. Finn. 2010. Vaccines based on abnormal self-antigens as tumor- associated antigens: Immune regulation. Seminars in immunology.
  166. Ahmad, R., D. Raina, M. D. Joshi, T. Kawano, J. Ren, S. Kharbanda, and D. Kufe. 2009. MUC1-C oncoprotein functions as a direct activator of the nuclear factor-kappaB p65 transcription factor. Cancer Res 69: 7013-7021.
  167. Wei, X., H. Xu, and D. Kufe. 2005. Human MUC1 oncoprotein regulates p53-responsive gene transcription in the genotoxic stress response. Cancer cell 7: 167-178.
  168. Yamamoto, M., A. Bharti, Y. Li, and D. Kufe. 1997. Interaction of the DF3/MUC1 breast carcinoma-associated antigen and beta-catenin in cell adhesion. J Biol Chem 272: 12492- 12494.
  169. Cascio, S., L. Zhang, and O. J. Finn. 2011. MUC1 protein expression in tumor cells regulates transcription of proinflammatory cytokines by forming a complex with nuclear factor-κB p65 and binding to cytokine promoters: importance of extracellular domain. J Biol Chem 286: 42248-42256.
  170. Goydos, J. S., E. Elder, T. L. Whiteside, O. J. Finn, and M. T. Lotze. 1996. A phase I trial of a synthetic mucin peptide vaccine. Induction of specific immune reactivity in patients with adenocarcinoma. J Surg Res 63: 298-304.
  171. Dreicer, R., W. M. Stadler, F. R. Ahmann, T. Whiteside, N. Bizouarne, B. Acres, J. M. Limacher, P. Squiban, and A. Pantuck. 2009. MVA-MUC1-IL2 vaccine immunotherapy (TG4010) improves PSA doubling time in patients with prostate cancer with biochemical failure. Invest New Drugs 27: 379-386.
  172. Butts, C., N. Murray, A. Maksymiuk, G. Goss, E. Marshall, D. Soulieres, Y. Cormier, P. Ellis, A. Price, R. Sawhney, M. Davis, J. Mansi, C. Smith, D. Vergidis, M. MacNeil, and M. Palmer. 2005. Randomized phase IIB trial of BLP25 liposome vaccine in stage IIIB and IV non-small-cell lung cancer. J Clin Oncol 23: 6674-6681.
  173. Kimura, T., J. R. McKolanis, L. A. Dzubinski, K. Islam, D. M. Potter, A. M. Salazar, R. E. Schoen, and O. J. Finn. 2013. MUC1 vaccine for individuals with advanced adenoma of the colon: a cancer immunoprevention feasibility study. Cancer Prev Res (Phila) 6: 18-26.
  174. Rowse, G. J., R. M. Tempero, M. L. VanLith, M. A. Hollingsworth, and S. J. Gendler. 1998. Tolerance and immunity to MUC1 in a human MUC1 transgenic murine model. Cancer Res 58: 315-321.
  175. Beatty, P. L., S. E. Plevy, A. R. Sepulveda, and O. J. Finn. 2007. Cutting edge: transgenic expression of human MUC1 in IL-10-/-mice accelerates inflammatory bowel disease and progression to colon cancer. J Immunol 179: 735-739.
  176. Soares, M. M., V. Mehta, and O. J. Finn. 2001. Three different vaccines based on the 140-amino acid MUC1 peptide with seven tandemly repeated tumor-specific epitopes elicit distinct immune effector mechanisms in wild-type versus MUC1-transgenic mice with different potential for tumor rejection. J Immunol 166: 6555-6563.
  177. Ryan, S. O., A. M. Vlad, K. Islam, J. Gariepy, and O. J. Finn. 2009. Tumor-associated MUC1 glycopeptide epitopes are not subject to self-tolerance and improve responses to MUC1 peptide epitopes in MUC1 transgenic mice. Biol Chem 390: 611-618.
  178. Inaba, K., M. Inaba, N. Romani, H. Aya, M. Deguchi, S. Ikehara, S. Muramatsu, and R. M. Steinman. 1992. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 176: 1693-1702.
  179. Finn, O. J. 2008. Cancer immunology. N Engl J Med 358: 2704-2715.
  180. Ohnmacht, C., A. Pullner, S. B. S. King, I. Drexler, S. Meier, T. Brocker, and D. Voehringer. 2009. Constitutive ablation of dendritic cells breaks self-tolerance of CD4 T cells and results in spontaneous fatal autoimmunity. J Exp Med 206: 549-559.
  181. Zou, W. 2005. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 5: 263-274.
  182. Evel-Kabler, K., X. T. Song, M. Aldrich, X. F. Huang, and S. Y. Chen. 2006. SOCS1 restricts dendritic cells' ability to break self tolerance and induce antitumor immunity by regulating IL-12 production and signaling. J Clin Invest 116: 90-100.
  183. Li, Y., N. Chu, A. Rostami, and G. X. Zhang. 2006. Dendritic cells transduced with SOCS-3 exhibit a tolerogenic/DC2 phenotype that directs type 2 Th cell differentiation in vitro and in vivo. J Immunol 177: 1679-1688.
  184. Jonuleit, H., E. Schmitt, K. Steinbrink, and A. H. Enk. 2001. Dendritic cells as a tool to induce anergic and regulatory T cells. Trends in Immunology 22: 394-400.
  185. Perruche, S., P. Zhang, Y. Liu, P. Saas, J. A. Bluestone, and W. Chen. 2008. CD3- specific antibody-induced immune tolerance involves transforming growth factor-beta from phagocytes digesting apoptotic T cells. Nat Med 14: 528-535.
  186. Munn, D. H., M. D. Sharma, D. Hou, B. Baban, J. R. Lee, S. J. Antonia, J. L. Messina, P. Chandler, P. A. Koni, and A. L. Mellor. 2004. Expression of indoleamine 2,3- dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J Clin Invest 114: 280-290.
  187. Kalinski, P. 2009. Dendritic cells in immunotherapy of established cancer: Roles of signals 1, 2, 3 and 4. Curr Opin Investig Drugs 10: 526-535.
  188. Nchinda, G., J. Kuroiwa, M. Oks, C. Trumpfheller, C. G. Park, Y. Huang, D. Hannaman, S. J. Schlesinger, O. Mizenina, M. C. Nussenzweig, K. Uberla, and R. M. Steinman. 2008. The efficacy of DNA vaccination is enhanced in mice by targeting the encoded protein to dendritic cells. J Clin Invest 118: 1427-1436.
  189. Mullins, D. W., S. L. Sheasley, R. M. Ream, T. N. Bullock, Y. X. Fu, and V. H. Engelhard. 2003. Route of immunization with peptide-pulsed dendritic cells controls the distribution of memory and effector T cells in lymphoid tissues and determines the pattern of regional tumor control. J Exp Med 198: 1023-1034.
  190. Kleindienst, P., and T. Brocker. 2003. Endogenous dendritic cells are required for amplification of T cell responses induced by dendritic cell vaccines in vivo. J Immunol 170: 2817-2823.
  191. Yewdall, A. W., S. B. Drutman, F. Jinwala, K. S. Bahjat, and N. Bhardwaj. 2010. CD8+ T cell priming by dendritic cell vaccines requires antigen transfer to endogenous antigen presenting cells. PLoS ONE 5: e11144.
  192. Tempero, R. M., M. L. VanLith, K. Morikane, G. J. Rowse, S. J. Gendler, and M. A. Hollingsworth. 1998. CD4+ Lymphocytes Provide MUC1-Specific Tumor Immunity In Vivo That Is Undetectable In Vitro and Is Absent in MUC1 Transgenic Mice. The Journal of Immunology 161: 5500-5506.
  193. Mukherjee, P., C. S. Madsen, A. R. Ginardi, T. L. Tinder, F. Jacobs, J. Parker, B. Agrawal, B. M. Longenecker, and S. J. Gendler. 2003. Mucin 1-specific immunotherapy in a mouse model of spontaneous breast cancer. J Immunother 26: 47-62.
  194. Kingston, D., M. A. Schmid, N. Onai, A. Obata-Onai, D. Baumjohann, and M. G. Manz. 2009. The concerted action of GM-CSF and Flt3-ligand on in vivo dendritic cell homeostasis. Blood 114: 835-843.
  195. Miller, M. J., A. S. Hejazi, S. H. Wei, M. D. Cahalan, and I. Parker. 2004. T cell repertoire scanning is promoted by dynamic dendritic cell behavior and random T cell motility in the lymph node. Proc Natl Acad Sci U S A 101: 998-1003.
  196. Zou, T., A. J. Caton, G. A. Koretzky, and T. Kambayashi. 2010. Dendritic cells induce regulatory T cell proliferation through antigen-dependent and -independent interactions. J Immunol 185: 2790-2799.
  197. Faure-André, G., P. Vargas, M.-I. Yuseff, M. Heuzé, J. Diaz, D. Lankar, V. Steri, J. Manry, S. Hugues, F. Vascotto, J. Boulanger, G. Raposo, M.-R. Bono, M. Rosemblatt, M. Piel, and A.-M. Lennon-Duménil. 2008. Regulation of dendritic cell migration by CD74, the MHC class II-associated invariant chain. Science 322: 1705-1710.
  198. de Witte, M. A., M. Coccoris, M. C. Wolkers, M. D. van den Boom, E. M. Mesman, J.-Y. Song, M. van der Valk, J. B. A. G. Haanen, and T. N. M. Schumacher. 2006. Targeting self-antigens through allogeneic TCR gene transfer. Blood 108: 870-877.
  199. Sakaguchi, S., K. Wing, Y. Onishi, P. Prieto-Martin, and T. Yamaguchi. 2009. Regulatory T cells: how do they suppress immune responses? Int Immunol 21: 1105- 1111.
  200. De Smedt, T., M. Van Mechelen, G. De Becker, J. Urbain, O. Leo, and M. Moser. 1997. Effect of interleukin-10 on dendritic cell maturation and function. Eur J Immunol 27: 1229-1235.
  201. Steinbrink, K., M. Wolfl, H. Jonuleit, J. Knop, and A. H. Enk. 1997. Induction of tolerance by IL-10-treated dendritic cells. J Immunol 159: 4772-4780.
  202. De Smedt, T., M. Van Mechelen, G. De Becker, J. Urbain, O. Leo, and M. Moser. 1997. Effect of interleukin-10 on dendritic cell maturation and function. European Journal of Immunology 27: 1229-1235.
  203. Brossart, P., A. Zobywalski, F. Grünebach, L. Behnke, G. Stuhler, V. L. Reichardt, L. Kanz, and W. Brugger. 2000. Tumor Necrosis Factor α and CD40 Ligand Antagonize the Inhibitory Effects of Interleukin 10 on T-Cell Stimulatory Capacity of Dendritic Cells. Cancer Research 60: 4485-4492.
  204. Lindquist, R. L., G. Shakhar, D. Dudziak, H. Wardemann, T. Eisenreich, M. L. Dustin, and M. C. Nussenzweig. 2004. Visualizing dendritic cell networks in vivo. Nat Immunol 5: 1243-1250.
  205. Watkins, S. C., and R. D. Salter. 2005. Functional connectivity between immune cells mediated by tunneling nanotubules. Immunity 23: 309-318.
  206. Kendal, A. R., and H. Waldmann. 2010. Infectious tolerance: therapeutic potential. Curr Opin Immunol 22: 560-565.
  207. Tarbell, K. V., S. Yamazaki, K. Olson, P. Toy, and R. M. Steinman. 2004. CD25+ CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. The Journal of experimental medicine 199: 1467-1477.
  208. Turley, D. M., and S. D. Miller. 2007. Peripheral tolerance induction using ethylenecarbodiimide-fixed APCs uses both direct and indirect mechanisms of antigen presentation for prevention of experimental autoimmune encephalomyelitis. J Immunol 178: 2212-2220.
  209. Degl'Innocenti, E., M. Grioni, G. Capuano, E. Jachetti, M. Freschi, M. T. Bertilaccio, R. Hess-Michelini, C. Doglioni, and M. Bellone. 2008. Peripheral T-cell tolerance associated with prostate cancer is independent from CD4+CD25+ regulatory T cells. Cancer Res 68: 292-300.
  210. Gritzapis, A. D., I. F. Voutsas, E. Lekka, M. Papamichail, and C. N. Baxevanis. 2010. Peptide vaccination breaks tolerance to HER-2/neu by generating vaccine-specific FasL(+) CD4(+) T cells: first evidence for intratumor apoptotic regulatory T cells. Cancer Res 70: 2686-2696.
  211. Cheever, M. A., J. P. Allison, A. S. Ferris, O. J. Finn, B. M. Hastings, T. T. Hecht, I. Mellman, S. A. Prindiville, J. L. Viner, L. M. Weiner, and L. M. Matrisian. 2009. The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res 15: 5323-5337.
  212. Ryan, S. O., A. M. Vlad, K. Islam, J. Gariépy, and O. J. Finn. 2009. Tumor-associated MUC1 glycopeptide epitopes are not subject to self-tolerance and improve responses to MUC1 peptide epitopes in MUC1 transgenic mice. Biol Chem 390: 611-618.
  213. Beyer, M., and J. L. Schultze. 2006. Regulatory T cells in cancer. Blood 108: 804-811.
  214. Klages, K., C. T. Mayer, K. Lahl, C. Loddenkemper, M. W. L. Teng, S. F. Ngiow, M. J. Smyth, A. Hamann, J. Huehn, and T. Sparwasser. 2010. Selective Depletion of Foxp3+ Regulatory T Cells Improves Effective Therapeutic Vaccination against Established Melanoma. Cancer Research 70: 7788-7799.
  215. Onizuka, S., I. Tawara, J. Shimizu, S. Sakaguchi, T. Fujita, and E. Nakayama. 1999. Tumor Rejection by in Vivo Administration of Anti-CD25 (Interleukin-2 Receptor α) Monoclonal Antibody. Cancer Research 59: 3128-3133.
  216. Sutmuller, R. P. M., L. M. van Duivenvoorde, A. van Elsas, T. N. M. Schumacher, M. E. Wildenberg, J. P. Allison, R. E. M. Toes, R. Offringa, and C. J. M. Melief. 2001. Synergism of Cytotoxic T Lymphocyte-Associated Antigen 4 Blockade and Depletion of Cd25+ Regulatory T Cells in Antitumor Therapy Reveals Alternative Pathways for Suppression of Autoreactive Cytotoxic T Lymphocyte Responses. The Journal of experimental medicine 194: 823-832.
  217. Viehl, C., T. Moore, U. Liyanage, D. Frey, J. Ehlers, T. Eberlein, P. Goedegebuure, and D. Linehan. 2006. Depletion of CD4+CD25+ Regulatory T Cells Promotes a Tumor- Specific Immune Response in Pancreas Cancer-Bearing Mice. Annals of Surgical Oncology 13: 1252-1258.
  218. Casares, N., L. Arribillaga, P. Sarobe, J. Dotor, A. Lopez-Diaz de Cerio, I. Melero, J. Prieto, F. Borrás-Cuesta, and J. J. Lasarte. 2003. CD4+/CD25+ Regulatory Cells Inhibit Activation of Tumor-Primed CD4+ T Cells with IFN-γ-Dependent Antiangiogenic Activity, as well as Long-Lasting Tumor Immunity Elicited by Peptide Vaccination. The Journal of Immunology 171: 5931-5939.
  219. Brooks, D. G., A. M. Lee, H. Elsaesser, D. B. McGavern, and M. B. Oldstone. 2008. IL- 10 blockade facilitates DNA vaccine-induced T cell responses and enhances clearance of persistent virus infection. J Exp Med 205: 533-541.
  220. Peat, N., S. J. Gendler, N. Lalani, T. Duhig, and J. Taylor-Papadimitriou. 1992. Tissue- specific expression of a human polymorphic epithelial mucin (MUC1) in transgenic mice. Cancer Res 52: 1954-1960.
  221. Jordan, R., S. Patel, H. Hu, and J. Lyons-Weiler. 2008. Efficiency analysis of competing tests for finding differentially expressed genes in lung adenocarcinoma. Cancer Inform 6: 389-421.
  222. Livak, K. J., and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408.
  223. Steinman, R. M., and J. Banchereau. 2007. Taking dendritic cells into medicine. Nature 449: 419-426.
  224. Banchereau, J., E. Klechevsky, N. Schmitt, R. Morita, K. Palucka, and H. Ueno. 2009. Harnessing human dendritic cell subsets to design novel vaccines. Ann N Y Acad Sci 1174: 24-32.
  225. Vlad, A. M., S. Muller, M. Cudic, H. Paulsen, L. Otvos, F.-G. Hanisch, and O. J. Finn. 2002. Complex carbohydrates are not removed during processing of glycoproteins by dendritic cells: processing of tumor antigen MUC1 glycopeptides for presentation to major histocompatibility complex class II-restricted T cells. J Exp Med 196: 1435-1446.
  226. Yamazaki, S., A. J. Bonito, R. Spisek, M. Dhodapkar, K. Inaba, and R. M. Steinman. 2007. Dendritic cells are specialized accessory cells along with TGF-for the differentiation of Foxp3+ CD4+ regulatory T cells from peripheral Foxp3 precursors. Blood 110: 4293-4302.
  227. Benson, M. J., K. Pino-Lagos, M. Rosemblatt, and R. J. Noelle. 2007. All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. J Exp Med 204: 1765-1774.
  228. Sallusto, F., P. Schaerli, P. Loetscher, C. Schaniel, D. Lenig, C. R. Mackay, S. Qin, and A. Lanzavecchia. 1998. Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur J Immunol 28: 2760-2769.
  229. Kriegel, M. A., C. Rathinam, and R. A. Flavell. 2012. Pancreatic islet expression of chemokine CCL2 suppresses autoimmune diabetes via tolerogenic CD11c+ CD11b+ dendritic cells. Proc Natl Acad Sci USA 109: 3457-3462.
  230. Meredith, M. M., K. Liu, G. Darrasse-Jeze, A. O. Kamphorst, H. A. Schreiber, P. Guermonprez, J. Idoyaga, C. Cheong, K. H. Yao, R. E. Niec, and M. C. Nussenzweig. 2012. Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage. J Exp Med 209: 1153-1165.
  231. Nefedova, Y., S. Nagaraj, A. Rosenbauer, C. Muro-Cacho, S. M. Sebti, and D. I. Gabrilovich. 2005. Regulation of dendritic cell differentiation and antitumor immune response in cancer by pharmacologic-selective inhibition of the janus-activated kinase 2/signal transducers and activators of transcription 3 pathway. Cancer Res 65: 9525- 9535.
  232. Akira, S., S. Uematsu, and O. Takeuchi. 2006. Pathogen recognition and innate immunity. Cell 124: 783-801.
  233. Guilliams, M., K. Crozat, S. Henri, S. Tamoutounour, P. Grenot, E. Devilard, B. de Bovis, L. Alexopoulou, M. Dalod, and B. Malissen. 2010. Skin-draining lymph nodes contain dermis-derived CD103(-) dendritic cells that constitutively produce retinoic acid and induce Foxp3(+) regulatory T cells. Blood 115: 1958-1968.
  234. Ratzinger, G., P. Stoitzner, S. Ebner, M. B. Lutz, G. T. Layton, C. Rainer, R. M. Senior, J. M. Shipley, P. Fritsch, G. Schuler, and N. Romani. 2002. Matrix metalloproteinases 9 and 2 are necessary for the migration of Langerhans cells and dermal dendritic cells from human and murine skin. J Immunol 168: 4361-4371.
  235. Farmer, W. H., and Z. Yuan. 1991. A continuous fluorescent assay for measuring protease activity using natural protein substrate. Analytical Biochemistry 197: 347-352.
  236. Folk, J. E. 1970. [32] Carboxypeptidase B (Porcine Pancreas). In Methods in Enzymology. L. L. Gertrude E. Perlmann, ed. Academic Press. 504-508.
  237. Cloosen, S., J. Arnold, M. Thio, G. M. J. Bos, B. Kyewski, and W. T. V. Germeraad. 2007. Expression of tumor-associated differentiation antigens, MUC1 glycoforms and CEA, in human thymic epithelial cells: implications for self-tolerance and tumor therapy. Cancer Res 67: 3919-3926.
  238. Osterholzer, J. J., J. L. Curtis, T. Polak, T. Ames, G. H. Chen, R. McDonald, G. B. Huffnagle, and G. B. Toews. 2008. CCR2 mediates conventional dendritic cell recruitment and the formation of bronchovascular mononuclear cell infiltrates in the lungs of mice infected with Cryptococcus neoformans. J Immunol 181: 610-620.
  239. Hanada, T., K. Tanaka, Y. Matsumura, M. Yamauchi, H. Nishinakamura, H. Aburatani, R. Mashima, M. Kubo, T. Kobayashi, and A. Yoshimura. 2005. Induction of hyper Th1 cell-type immune responses by dendritic cells lacking the suppressor of cytokine signaling-1 gene. J Immunol 174: 4325-4332.
  240. Ryo, A., F. Suizu, Y. Yoshida, K. Perrem, Y. C. Liou, G. Wulf, R. Rottapel, S. Yamaoka, and K. P. Lu. 2003. Regulation of NF-kappaB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA. Molecular cell 12: 1413- 1426.
  241. Neefjes, J., M. L. Jongsma, P. Paul, and O. Bakke. 2011. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol 11: 823-836.
  242. Zavasnik-Bergant, T., and B. Turk. 2006. Cysteine cathepsins in the immune response. Tissue antigens 67: 349-355.
  243. Burgos, F. J., M. Salva, V. Villegas, F. Soriano, E. Mendez, and F. X. Aviles. 1991. Analysis of the activation process of porcine procarboxypeptidase B and determination of the sequence of its activation segment. Biochemistry 30: 4082-4089.
  244. Beatty, P. L., and O. J. Finn. 2013. Preventing cancer by targeting abnormally expressed self-antigens: MUC1 vaccines for prevention of epithelial adenocarcinomas. Ann N Y Acad Sci 1284: 52-56.
  245. Beatty, P. L., S. Narayanan, J. Gariépy, S. Ranganathan, and O. J. Finn. 2010. Vaccine against MUC1 antigen expressed in inflammatory bowel disease and cancer lessens colonic inflammation and prevents progression to colitis-associated colon cancer. Cancer Prev Res (Phila Pa) 3: 438-446.
  246. Barnd, D. L., M. S. Lan, R. S. Metzgar, and O. J. Finn. 1989. Specific, major histocompatibility complex-unrestricted recognition of tumor-associated mucins by human cytotoxic T cells. Proc Natl Acad Sci U S A 86: 7159-7163.
  247. Jerome, K. R., D. L. Barnd, K. M. Bendt, C. M. Boyer, J. Taylor-Papadimitriou, I. F. McKenzie, R. C. Bast, Jr., and O. J. Finn. 1991. Cytotoxic T-lymphocytes derived from patients with breast adenocarcinoma recognize an epitope present on the protein core of a mucin molecule preferentially expressed by malignant cells. Cancer Res 51: 2908-2916.
  248. Slovin, S. F., G. Ragupathi, C. Fernandez, M. Diani, M. P. Jefferson, A. Wilton, W. K. Kelly, M. Morris, D. Solit, H. Clausen, P. Livingston, and H. I. Scher. 2007. A polyvalent vaccine for high-risk prostate patients: "are more antigens better?". Cancer Immunol Immunother 56: 1921-1930.
  249. Wandall, H. H., H. Hassan, E. Mirgorodskaya, A. K. Kristensen, P. Roepstorff, E. P. Bennett, P. A. Nielsen, M. A. Hollingsworth, J. Burchell, J. Taylor-Papadimitriou, and H. Clausen. 1997. Substrate specificities of three members of the human UDP-N-acetyl- alpha-D-galactosamine:Polypeptide N-acetylgalactosaminyltransferase family, GalNAc- T1, -T2, and -T3. J Biol Chem 272: 23503-23514.
  250. Subramanian, A., P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A. Gillette, A. Paulovich, S. L. Pomeroy, T. R. Golub, E. S. Lander, and J. P. Mesirov. 2005. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102: 15545-15550.
  251. Kahn-Perles, B., J. Salamero, and O. Jouans. 1994. Biogenesis of MHC class I antigens: involvement of multiple chaperone molecules. European journal of cell biology 64: 176- 185.
  252. Idoyaga, J., C. Cheong, K. Suda, N. Suda, J. Y. Kim, H. Lee, C. G. Park, and R. M. Steinman. 2008. Cutting edge: langerin/CD207 receptor on dendritic cells mediates efficient antigen presentation on MHC I and II products in vivo. J Immunol 180: 3647- 3650.
  253. Hernandez-Lopez, C., J. Valencia, L. Hidalgo, V. G. Martinez, A. G. Zapata, R. Sacedon, A. Varas, and A. Vicente. 2008. CXCL12/CXCR4 signaling promotes human thymic dendritic cell survival regulating the Bcl-2/Bax ratio. Immunol Lett 120: 72-78.
  254. Honda, K., H. Yanai, H. Negishi, M. Asagiri, M. Sato, T. Mizutani, N. Shimada, Y. Ohba, A. Takaoka, N. Yoshida, and T. Taniguchi. 2005. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434: 772-777.
  255. Pooley, J. L., W. R. Heath, and K. Shortman. 2001. Cutting edge: intravenous soluble antigen is presented to CD4 T cells by CD8-dendritic cells, but cross-presented to CD8 T cells by CD8+ dendritic cells. J Immunol 166: 5327-5330.
  256. Gawden-Bone, C., Z. Zhou, E. King, A. Prescott, C. Watts, and J. Lucocq. 2010. Dendritic cell podosomes are protrusive and invade the extracellular matrix using metalloproteinase MMP-14. Journal of cell science 123: 1427-1437.
  257. Alvarez, D., E. H. Vollmann, and U. H. von Andrian. 2008. Mechanisms and consequences of dendritic cell migration. Immunity 29: 325-342.
  258. Gottschalk, R. A., E. Corse, and J. P. Allison. 2010. TCR ligand density and affinity determine peripheral induction of Foxp3 in vivo. J Exp Med 207: 1701-1711.
  259. Keilholz, U., P. Martus, and C. Scheibenbogen. 2006. Immune monitoring of T-cell responses in cancer vaccine development. Clin Cancer Res 12: 2346s-2352s.
  260. Adachi, Y., J. Toki, K. Ikebukuro, M. Tomita, H. Kaneda, A. Tanabe, L. Jun, K. Minamino, Y. Suzuki, S. Taketani, and S. Ikehara. 2002. Immature dendritic cells (CD11c+ CD3-B220-cells) present in mouse peripheral blood. Immunobiology 206: 354-367.
  261. Haller Hasskamp, J., J. L. Zapas, and E. G. Elias. 2005. Dendritic cell counts in the peripheral blood of healthy adults. American journal of hematology 78: 314-315.
  262. Mailliard, R. B., A. Wankowicz-Kalinska, Q. Cai, A. Wesa, C. M. Hilkens, M. L. Kapsenberg, J. M. Kirkwood, W. J. Storkus, and P. Kalinski. 2004. alpha-type-1 polarized dendritic cells: a novel immunization tool with optimized CTL-inducing activity. Cancer Res 64: 5934-5937.
  263. Palucka, K., H. Ueno, and J. Banchereau. 2011. Recent developments in cancer vaccines. J Immunol 186: 1325-1331.
  264. Divito, S. J., Z. Wang, W. J. Shufesky, Q. Liu, O. A. Tkacheva, A. Montecalvo, G. Erdos, A. T. Larregina, and A. E. Morelli. 2010. Endogenous dendritic cells mediate the effects of intravenously injected therapeutic immunosuppressive dendritic cells in transplantation. Blood 116: 2694-2705.
  265. Montecalvo, A., A. T. Larregina, W. J. Shufesky, D. Beer Stolz, M. L. G. Sullivan, J. M. Karlsson, C. J. Baty, G. A. Gibson, G. Erdos, Z. Wang, J. Milosevic, O. A. Tkacheva, S. J. Divito, R. Jordan, J. Lyons-Weiler, S. C. Watkins, and A. E. Morelli. 2012. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 119: 756-766.
  266. Kunitz, M. 1939. Formation of Trypsin from Crystalline Trypsinogen by Means of Enterokinase. The Journal of general physiology 22: 429-446.
  267. Gerner, M. Y., and M. F. Mescher. 2009. Antigen processing and MHC-II presentation by dermal and tumor-infiltrating dendritic cells. J Immunol 182: 2726-2737.
  268. Boes, M., J. Cerny, R. Massol, M. Op den Brouw, T. Kirchhausen, J. Chen, and H. L. Ploegh. 2002. T-cell engagement of dendritic cells rapidly rearranges MHC class II transport. Nature 418: 983-988.
  269. Amigorena, S., J. R. Drake, P. Webster, and I. Mellman. 1994. Transient accumulation of new class II MHC molecules in a novel endocytic compartment in B lymphocytes. Nature 369: 113-120.
  270. Peters, P. J., J. J. Neefjes, V. Oorschot, H. L. Ploegh, and H. J. Geuze. 1991. Segregation of MHC class II molecules from MHC class I molecules in the Golgi complex for transport to lysosomal compartments. Nature 349: 669-676.
  271. Maxfield, F. R., and D. J. Yamashiro. 1987. Endosome acidification and the pathways of receptor-mediated endocytosis. Advances in experimental medicine and biology 225: 189-198.
  272. Reichenbach, D. K., and O. J. Finn. 2013. Early in vivo signaling profiles in MUC1- specific CD4 T cells responding to two different MUC1-targeting vaccines in two different microenvironments. Oncoimmunology 2: e23429.
  273. Della Chiesa, M., M. Vitale, S. Carlomagno, G. Ferlazzo, L. Moretta, and A. Moretta. 2003. The natural killer cell-mediated killing of autologous dendritic cells is confined to a cell subset expressing CD94/NKG2A, but lacking inhibitory killer Ig-like receptors. Eur J Immunol 33: 1657-1666.
  274. Hayakawa, Y., V. Screpanti, H. Yagita, A. Grandien, H. G. Ljunggren, M. J. Smyth, and B. J. Chambers. 2004. NK cell TRAIL eliminates immature dendritic cells in vivo and limits dendritic cell vaccination efficacy. J Immunol 172: 123-129.
  275. Lanier, L. L. 2005. NK cell recognition. Annu Rev Immunol 23: 225-274.
  276. Bauer, S., V. Groh, J. Wu, A. Steinle, J. H. Phillips, L. L. Lanier, and T. Spies. 1999. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285: 727-729.
  277. Cerwenka, A., A. B. Bakker, T. McClanahan, J. Wagner, J. Wu, J. H. Phillips, and L. L. Lanier. 2000. Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice. Immunity 12: 721-727.
  278. Bix, M., N. S. Liao, M. Zijlstra, J. Loring, R. Jaenisch, and D. Raulet. 1991. Rejection of class I MHC-deficient haemopoietic cells by irradiated MHC-matched mice. Nature 349: 329-331.
  279. Lanier, L. L., D. W. Buck, L. Rhodes, A. Ding, E. Evans, C. Barney, and J. H. Phillips. 1988. Interleukin 2 activation of natural killer cells rapidly induces the expression and phosphorylation of the Leu-23 activation antigen. J Exp Med 167: 1572-1585.
  280. Alter, G., J. M. Malenfant, and M. Altfeld. 2004. CD107a as a functional marker for the identification of natural killer cell activity. Journal of immunological methods 294: 15- 22.
  281. Cooper, M. A., J. E. Bush, T. A. Fehniger, J. B. VanDeusen, R. E. Waite, Y. Liu, H. L. Aguila, and M. A. Caligiuri. 2002. In vivo evidence for a dependence on interleukin 15 for survival of natural killer cells. Blood 100: 3633-3638.
  282. Andre, F., N. E. Schartz, N. Chaput, C. Flament, G. Raposo, S. Amigorena, E. Angevin, and L. Zitvogel. 2002. Tumor-derived exosomes: a new source of tumor rejection antigens. Vaccine 20 Suppl 4: A28-31.