Optimal Placement of Delay-constrained Computing Tasks in a Softwarized Edge Infrastructure (original) (raw)
2021, IEEE 4th 5G World Forum (5GWF)
Edge computing is a prominent solution to support compute-intensive interactive applications which, on the one hand, can hardly run on resource-constrained consumer devices and, on the other hand, may suffer from running in the cloud due to the strict delay constraints. The availability of network nodes with heterogeneous capabilities in the distributed edge infrastructure makes the computing task allocation decision a challenge. The straightforward approach of offloading the computation task to the edge node that is the nearest to the data source may lead to performance inefficiencies. Indeed, such edge node may easily get overloaded, thus failing to ensure low-latency task execution. A more judicious strategy is required which accounts for the edge nodes' processing capabilities and for the queuing delay accumulated when tasks wait before being executed. In this paper, we propose a novel optimal computing task allocation strategy aimed at minimizing the network resources usage, while bounding the execution latency at the edge node acting as the task executor. We formulate the optimal task allocation through an integer linear programming problem, assuming an edge infrastructure managed through software-defined networking. Achieved results show that the proposal meets the targeted objectives under all the considered simulation settings and significantly outperforms other benchmark solutions.
Related papers
Time and resource constrained offloading with multi-task in a mobile edge computing node
International Journal of Electrical and Computer Engineering (IJECE), 2020
In recent years, the importance of the mobile edge computing (MEC) paradigm along with the 5G, the Internet of Things (IoT) and virtualization of network functions is well noticed. Besides, the implementation of computation-intensive applications at the mobile device level is limited by battery capacity, processing capabalities and execution time. To increase the batteries life and improve the quality of experience for computationally intensive and latency-sensitive applications, offloading some parts of these applications to the MEC is proposed. This paper presents a solution for a hard decision problem that jointly optimizes the processing time and computing resources in a mobile edge-computing node. Hence, we consider a mobile device with an offloadable list of heavy tasks and we jointly optimize the offloading decisions and the allocation of IT resources to reduce the latency of tasks' processing. Thus, we developped a heuristic solution based on the simulated annealing algorithm, which can improve the offloading rate and reduce the total task latency while meeting short decision time. We performed a series of experiments to show its efficiency. Finally, the obtained results in terms of full-time treatrement are very encouraging. In addition, our solution makes offloading decisions within acceptable and achievable deadlines.
Future Internet
Task allocation in edge computing refers to the process of distributing tasks among the various nodes in an edge computing network. The main challenges in task allocation include determining the optimal location for each task based on the requirements such as processing power, storage, and network bandwidth, and adapting to the dynamic nature of the network. Different approaches for task allocation include centralized, decentralized, hybrid, and machine learning algorithms. Each approach has its strengths and weaknesses and the choice of approach will depend on the specific requirements of the application. In more detail, the selection of the most optimal task allocation methods depends on the edge computing architecture and configuration type, like mobile edge computing (MEC), cloud-edge, fog computing, peer-to-peer edge computing, etc. Thus, task allocation in edge computing is a complex, diverse, and challenging problem that requires a balance of trade-offs between multiple confl...
Joint Task Offloading and Resource Allocation for Multi-Server Mobile-Edge Computing Networks
Mobile-edge computing (MEC) is an emerging paradigm that provides a capillary distribution of cloud computing capabilities to the edge of the wireless access network, enabling rich services and applications in close proximity to the end users. In this paper, an MEC enabled multi-cell wireless network is considered where each base station (BS) is equipped with a MEC server that assists mobile users in executing computation-intensive tasks via task offloading. The problem of joint task offloading and resource allocation is studied in order to maximize the users' task offloading gains, which is measured by a weighted sum of reductions in task completion time and energy consumption. The considered problem is formulated as a mixed integer nonlinear program (MINLP) that involves jointly optimizing the task offloading decision, uplink transmission power of mobile users, and computing resource allocation at the MEC servers. Due to the combinatorial nature of this problem, solving for optimal solution is difficult and impractical for a large-scale network. To overcome this drawback, we propose to decompose the original problem into a resource allocation (RA) problem with fixed task offloading decision and a task offloading (TO) problem that optimizes the optimal-value function corresponding to the RA problem. We address the RA problem using convex and quasi-convex optimization techniques, and propose a novel heuristic algorithm to the TO problem that achieves a sub-optimal solution in polynomial time. Simulation results show that our algorithm performs closely to the optimal solution and that it significantly improves the users' offloading utility over traditional approaches.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.