Transport through the Golgi Apparatus by Rapid Partitioning within a Two-Phase Membrane System (original) (raw)
Related papers
The Kiss-and-Run Model of Intra-Golgi Transport
International Journal of Molecular Sciences, 2012
The Golgi apparatus (GA) is the main station along the secretory pathway. Mechanisms of intra-Golgi transport remain unresolved. Three models compete with each other for the right to be defined as the paradigm. The vesicular model cannot explain the following: (1) lipid droplets and aggregates of procollagen that are larger than coatomer I (COPI)-dependent vesicles are transported across the GA; and (2) most anterograde cargoes are depleted in COPI vesicles. The compartment progression/maturation model has the following problems: (1) most Golgi-resident proteins are depleted in COPI vesicles; (2) there are no COPI vesicles for the recycling of the resident proteins in the trans-most-Golgi cisterna; and (3) different proteins have different rates of intra-Golgi transport. The diffusion model based on permanent inter-cisternal connections cannot explain the existence of lipid, ionic and protein gradients across the Golgi stacks. In contrast, the kiss-and-run model has the potential to explain most of the experimental observations. The kiss-and-run model can be symmetric when fusion and then fission occurs in the same place, and asymmetric when fusion takes place in one location, whereas fission takes place in another. The asymmetric kiss-and-run model resembles the carrier maturation mechanism, and it can be used to explain the transport of large cargo aggregates.
Journal of Cell Biology, 1998
Quantitative time-lapse imaging data of single cells expressing the transmembrane protein, vesicular stomatitis virus ts045 G protein fused to green fluorescent protein (VSVG–GFP), were used for kinetic modeling of protein traffic through the various compartments of the secretory pathway. A series of first order rate laws was sufficient to accurately describe VSVG–GFP transport, and provided compartment residence times and rate constants for transport into and out of the Golgi complex and delivery to the plasma membrane. For ER to Golgi transport the mean rate constant (i.e., the fraction of VSVG–GFP moved per unit of time) was 2.8% per min, for Golgi to plasma membrane transport it was 3.0% per min, and for transport from the plasma membrane to a degradative site it was 0.25% per min. Because these rate constants did not change as the concentration of VSVG–GFP in different compartments went from high (early in the experiment) to low (late in the experiment), secretory transport mac...
From cartoons to quantitative models in Golgi transport
2020
ABSTRACTCell biology is evolving to become a more formal and quantitative science. In particular, several mathematical models have been proposed to address Golgi self-organization and protein and lipid transport. However, most scientific articles about the Golgi apparatus are still using static cartoons to represent their findings that miss the dynamism of this organelle. In this report, we show that schematic drawings of Golgi trafficking can be easily translated into an Agent-Based Model (ABM) using the Repast platform. The simulations generate an active interplay among cisternae and vesicles rendering quantitative predictions about Golgi stability and transport of soluble and membrane-associated cargoes. The models can incorporate complex networks of molecular interactions and chemical reactions by association with COPASI, a software that handles Ordinary Differential Equations. The strategy described provides a simple, flexible, and multiscale support to analyze Golgi transport....
Intra-Golgi transport: A way to a new paradigm?
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2005
The morpho-functional principles of intra-Golgi transport are, surprisingly, still not clear, which is in marked contrast to our advanced knowledge of the underlying molecular machineries. Recently, the conceptual and technological hindrances that had delayed progress in this area have been disappearing, and a cluster of powerful morphological techniques has been revealing new glimpses of the organization of traffic in intact cells. Here, we discuss the new concepts around the present models of intra-Golgi transport.
Lipid-transfer proteins in membrane trafficking at the Golgi complex
Biochimica Et Biophysica Acta-molecular and Cell Biology of Lipids, 2007
The Golgi complex (GC) represents the central junction for membrane trafficking. Protein and lipid cargoes continuously move through the GC in both anterograde and retrograde directions, departing to and arriving from diverse destinations within the cell. Nevertheless, the GC is able to maintain its identity and strict compartmentalisation, having a different composition in terms of protein and lipid content compared to other organelles. The discovery of coat protein complexes and the elucidation of their role in sorting cargo proteins into specific transport carriers have provided a partial answer to this phenomenon. However, it is more difficult to understand how relatively small and diffusible molecules like lipids can be concentrated in or excluded from specific subcellular compartments. The discovery of lipid-transfer proteins operating in the secretory pathway and specifically at the GC has shed light on one possible way in which this lipid compartmentalisation can be accomplished. The correct lipid distribution along the secretory pathway is of crucial importance for cargo protein sorting and secretion. This review focuses on what is now known about the putative and effective lipid-transfer proteins at the GC, and on how they affect the function and structure of the GC itself.
The Journal of Cell Biology
A well-characterized cell-free assay that reconstitutes Golgi transport is shown to require physically fragmented Golgi fractions for maximal activity. A Golgi fraction containing large, highly stacked flattened cisternae associated with coatomer-rich components was inactive in the intra-Golgi transport assay. In contrast, more fragmented hepatic Golgi fractions of lower purity were highly active in this assay. Control experiments ruled out defects in glycosylation, the presence of excess coatomer or inhibitory factors, as well as the lack or consumption of limiting diffusible factors as responsible for the lower activity of intact Golgi fractions. Neither Brefeldin A treatment, preincubation with KCl (that completely removed associated coatomer) or preincubation with imidazole buffers that caused unstacking, activated stacked fractions for transport. Only physical fragmentation promoted recovery of Golgi fractions active for transport in vitro. Rate-zonal centrifugation partially separated smaller transport-active Golgi fragments with a unique v-SNARE pattern, away from the bulk of Golgi-derived elements identified by their morphology and content of Golgi marker enzymes ( N -acetyl glucosaminyl and galactosyl transferase activities). These fragments released during activation likely represent intra-Golgi continuities involved in maintaining the dynamic redistribution of resident enzymes during rapid anterograde transport of secretory cargo through the Golgi in vivo.
eLife, 2014
The mechanism of transport through the Golgi complex is not completely understood, insofar as no single transport mechanism appears to account for all of the observations. Here, we compare the transport of soluble secretory proteins (albumin and α1-antitrypsin) with that of supramolecular cargoes (e.g., procollagen) that are proposed to traverse the Golgi by compartment progression-maturation. We show that these soluble proteins traverse the Golgi much faster than procollagen while moving through the same stack. Moreover, we present kinetic and morphological observations that indicate that albumin transport occurs by diffusion via intercisternal continuities. These data provide evidence for a transport mechanism that applies to a major class of secretory proteins and indicate the co-existence of multiple intra-Golgi trafficking modes.