An NMR study on the molecular dynamic and exchange effects in composite Nafion/sulfated titania membranes for PEMFCs (original) (raw)

Abstract

sparkles

AI

This work investigates the use of composite Nafion/sulfated titania membranes in proton exchange membrane fuel cells (PEMFCs), focusing on the effects of sulfated titania on water retention and diffusion properties. Through a simple two-sites model, the paper discusses water dynamics and the interactions between water and the polymer in the membranes. The findings suggest that the addition of sulfated titania improves membrane performance at elevated temperatures by enhancing proton conductivity through better water retention.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (46)

  1. Jannasch P. Recent developments in high-temperature proton conducting polymer electrolyte membranes. Curr Opin Colloid Interface Sci 2003;8:96e102.
  2. Shyu JC, Hsueh KL, Tsau F. Performance of proton exchange membrane fuel cells at elevated temperature. Energy Convers Manag 2011;52:3415e24.
  3. Mauritz K, Moore RB. State of understanding of nafion. Chem Rev 2004;104(10):4535e85.
  4. Chandan A, Hattenberger M, El-kharouf A, Du S, Dhir A, Self V, et al. High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC). A review. J Power Sources 2013;231:264e78.
  5. Ketpang K, Lee K, Shanmugam S. Facile synthesis of porous metal oxide nanotubes and modified nafion composite membranes for polymer electrolyte fuel cells operated under low relative humidity. ACS Appl Mater Interfaces 2014;6:16734e44.
  6. Nicotera I, Enotiadis A, Angjeli K, Coppola L, Gournis D. Evaluation of smectite clays as nanofillers for the synthesis of nanocomposite polymer electrolytes for fuel cell applications. Int J Hydrogen Energy 2012;37:6236e45.
  7. Nicotera I, Enotiadis A, Angjeli K, Coppola L, Ranieri GA, Gournis D. Effective improvement of water-retention in nanocomposite membranes using novel organo-modified clays as fillers for high temperature PEMFCs. J Phys Chem B 2011;115:9087e97.
  8. Enotiadis A, Angjeli K, Baldino N, Nicotera I, Gournis D. Graphene-based nafion nanocomposite membranes: enhanced proton transport and water retention by novel organo-functionalized graphene oxide nanosheets. Small 2012;8:3338e49.
  9. Uchida H, Ueno Y, Hagihara H, Watanabe M. Self- humidifying electrolyte membranes for fuel cells. Preparation of highly dispersed TiO 2 particles in nafion 112. J Electrochem Soc 2003;150(1):A57e62.
  10. Navarra MA, Fernicola A, Panero S, Martinelli A, Matic A. Effect of functionalized silica particles on cross-linked poly(vinyl alcohol) proton conducting membranes. J Appl Electrochem 2008;38(7):931e8.
  11. Adjemian KT, Dominey R, Krishnan L, Ota H, Majsztrik P, Zhang T, et al. Function and characterization of metal oxide- nafion composite membranes for elevated-temperature H 2 / O 2 PEM fuel cells. Chem Mater 2006;18(9):2238e48.
  12. Navarra MA, Croce F, Scrosati B. New, high temperature superacid zirconia-doped Nafion composite membranes. J Mater Chem 2007;17:3210e5.
  13. Navarra MA, Abbati C, Scrosati B. Properties and fuel cell performance of a Nafion-based, sulfated zirconia- added, composite membrane. J Power Sources 2008;183:109e13.
  14. Navarra MA, Abbati C, Croce F, Scrosati B. Temperature- dependent performances of a fuel cell using a superacid zirconiadoped nafion polymer electrolyte. Fuel Cells 2009;9:222e5.
  15. D'Epifanio A, Navarra MA, Weise F, Mecheri B, Farrington J, Licoccia S, et al. Composite nafion/sulfated zirconia membranes: effect of the filler surface properties on proton transport characteristics. Chem Mater 2010;22:813e21.
  16. Giffin GA, Piga M, Lavina S, Navarra MA, D'Epifanio A, Scrosati B, et al. Characterization of sulfated-zirconia/ Nafion ® composite membranes for proton exchange membrane fuel cells. J Power Sources 2012;198:66e75.
  17. Scipioni R, Gazzoli D, Teocoli F, Palumbo O, Paolone A, Ibris N, et al. Preparation and characterization of nanocomposite polymer membranes containing functionalized SnO 2 additives. Membranes 2014;4:123e42.
  18. Brutti S, Scipioni R, Navarra MA, Panero S, Allodi V, Giarola M, et al. SnO 2 -Nafion nanocomposite polymer electrolytes for fuel cell applications. Int J Nanotechnol 2014;11:882e96.
  19. Sgambetterra M, Panero S, Hassoun J, Navarra MA. Hybrid membranes based on sulfated titania nanoparticles as low- cost proton conductors. Ionics 2013;19:1203e6.
  20. Cohen B, Huppert D. Connection between proton abnormal conductivity in water and dielectric relaxation time. J Phys Chem 2003;107:3598.
  21. Eikerling M, Kornyshev AA, Kuznetsov AM, Ulstrup J, Walbran S. Mechanisms of proton conductance in polymer electrolyte membranes. J Phys Chem B 2001;105:3646e62.
  22. Kreuer K. On the development of proton conducting materials for technological applications. Solid State Ionics 1997;97:1e15.
  23. Nilson P, Lindman B. Water self-diffusion in nonionic surfactant solutions. Hydration and obstruction effects. J Phys Chem 1983;87:4756.
  24. Please cite this article in press as: Nicotera I, et al., An NMR study on the molecular dynamic and exchange effects in composite Nafion/ sulfated titania membranes for PEMFCs, International Journal of Hydrogen Energy (2015), http://dx.doi.org/10.1016/ j.ijhydene.2015.06.137
  25. Nilson P, Lindman B. Nuclear magnetic resonance self- diffusion and proton relaxation studies of nonionic surfactant solutions. Aggregate shape in isotropic solutions above the clouding temperature. J Phys Chem 1984;88:4764.
  26. Tanner JE. Use of the stimulated echo in NMR diffusion studies. J Chem Phys 1970;52(9):2523e6.
  27. Nicotera I, Zhang T, Bocarsly A, Greenbaum S. NMR characterization of composite polymer membranes for low- humidity PEM fuel cells. J Electrochem Soc 2007;154(5):B466.
  28. Gong X, Bandis A, Tao A, Meresi G, Wang Y, Inglefield PT, et al. Self-diffusion of water, ethanol and decafluropentane in perfluorosulfonate ionomer by pulse field gradient NMR. Polymer 2001;42:6485e92.
  29. MacMillan B, Sharp A, Armstrong R. An n.m.r. investigation of the dynamical characteristics of water absorbed in Nafion. Polymer 1999;40(10):2471e80.
  30. Pereira F, Vall e K, Belleville P, Morin A, Lambert S, Sanchez C. Advanced mesostructured hybrid SilicaÀNafion membranes for high-performance PEM fuel cell. Chem Mater 2008;20(5):1710e8.
  31. Nicotera I, Simari C, Coppola L, Zygouri P, Gournis D, Brutti S, et al. Sulfonated graphene oxide platelets in nafion nanocomposite membrane: advantages for application in direct methanol fuel cells. J Phys Chem C 2014;118:24357e68.
  32. Coppola L, Muzzalupo R, Ranieri G. Temperature dependence of water self-diffusion in the gel phase of a potassium palmitate system. J Phys II 1996;6:657e66.
  33. Gottwald A, Creamer LK, Hubbard PL, Callaghan PT. Diffusion, relaxation, and chemical exchange in casein gels: a nuclear magnetic resonance study. J Chem Phys 2005;122(3):34506.
  34. Johnson CS. Effects of chemical exchange in diffusion ordered 2D NMR spectra. J Magn Reson Ser A 1993;102:214e8.
  35. Wang JH. Theory of the self-diffusion of water in protein solutions. A new method for studying the hydration and shape of protein molecules. J Am Chem Soc 1954;76:855.
  36. Chidichimo G, De Fazio D, Ranieri G, Terenzi M. Self- diffusion of water in a lamellar lyotropic liquid crystal: a study by pulased field gradient NMR. Chem Phys Lett 1985;117:514e7.
  37. Jonsson B, Wennerstrom H, Nilsson P, Linse P. Self-diffusion of small molecules in colloidal systems. Colloid Polym Sci 1986;264:77.
  38. Anderson DM, Wennerstrom H. Self-diffusion in bicontinuous cubic phases. L3 Phases Microemulsions June 1988;1990:8683e94.
  39. Poulos AS, Constantin D, Davidson P, Imperor M, Judeinstein P, Pansu B. A PGSE-NMR study of molecular self- diffusion in lamellar phases doped with polyoxometalates. J Phys Chem B 2010;114:220e7.
  40. Momot KI. Diffusion tensor of water in model articular cartilage. Eur Biophys J 2011;40:81e91.
  41. Dorenbos G, Morohoshi K. Chain architecture dependence of pore morphologies and water diffusion in grafted and block polymer electrolyte fuel cell membranes. Energy Environ Sci 2010;3:1326e38.
  42. Moreau P, van Effenterre D, Navaillesa L, Nalletb F, Rouxc D. Confined diffusion of hydrophilic probes inserted in lyotropic lamellar phases. Eur Phys J E 2008;26:225e34.
  43. Faxen H. Ann Phys 1922;4:89.
  44. Kreuer KD, Paddison SJ, Spohr E, Schuster M. Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology. Chem Rev 2004;104:4637e78.
  45. Schmidt-Rohr K, Chen Q. Parallel cylindrical water nanochannels in Nafion fuel-cell membranes. Nat Mater 2008;7:75e83.
  46. Choi BG, Hong J, Park YC, Jung DH, Hong WH, Hammond PT, et al. Innovative polymer nanocomposite electrolytes: nanoscale manipulation of ion channels by functionalized graphenes. ACS Nano 2011;5(6):5167e74.