Jet cocoons and the formation of narrow-line clouds in Seyfert galaxies (original) (raw)

Jet-Cloud Interactions and the Brightening of the Narrow-Line Region in Seyfert Galaxies

The Astrophysical Journal, 1997

We study the kinematical and brightness evolution of emission line clouds in the narrow line region (NLR) of Seyfert galaxies during the passage of a jet. We derive a critical density above which a cloud remains radiative after compression by the jet cocoon. The critical density depends mainly on the cocoon pressure. Super-critical clouds increase in emission line brightness, while sub-critical clouds generally are highly overheated reducing their luminosity below that of the intercloud medium. Due to the pressure stratification in the bow-shock of the jet, a cylindrical structure of nested shells develops around the jet. The most compact and brightest compressed clouds surround the cloud-free channel of the radio jet. To support our analytical model we present a numerical simulation of a supersonic jet propagating into a clumpy NLR. The position-velocity diagram of the simulated Hα emission shows total line widths of the order of 500 km s −1 with large-scale variations in the radial velocities of the clouds due to the stratified pressure in the bow-shock region of the jet. Most of the luminosity is concentrated in a few dense clouds surrounding the jet. These morphological and kinematic signatures are all found in the well observed NLR of NGC 1068 and other Seyfert galaxies.

Jet cocoons in rotating Seyfert galaxies: adaptive three-dimensional hydrodynamics

Monthly Notices of the Royal Astronomical Society, 2001

The narrow-line regions of some Seyfert galaxies show evidence for nuclear jets interacting with the rotating interstellar gas; this is shown by point-symmetric emission-line structures in, for example, Mrk 573 and NGC 3393. We study this situation with numerical simulations of a jet in a sidewind of uniform density but linearly increasing velocity as one moves from the source. We use a new three-dimensional hydrodynamic code on a binary adaptive grid. We consider two different models, one with a cocoon expansion speed higher and one with expansion speed lower than the ISM speed. We find that the model with high cocoon expansion speed is similar to results from previous calculations without a sidewind, except for minor asymmetries. However, model B with the slow expansion speed and fast wind speed shows considerable qualitative differences. The jet hits and bounces off the dense cooling envelope, which is dragged by the sidewind into the straight path of the jet. The path of the jet within the cocoon is straight as long as the extended hot cocoon acts as a shield. Once the jet hits the cold envelope of the cocoon it is bent directly by the ram pressure of the ambient medium and follows a parabola of the third degree, which we derive as an analytical approximation for the path. The region where the jet hits the envelope is the start of strong radio emission. This point moves towards the source with age of the jet and its bending angle. We therefore find a possible observable correlation between the distance of the first strong radio knot and the overall bending of jets in Seyfert galaxies. A comparison of our results with observations of Mrk 573 shows that the essential structural and spectral features can be reproduced by choosing an appropriate viewing angle and evolutionary stage. Looking approximately along the original jet direction a structure is found which strongly resembles an ionization cone. Hence caution should prevail when interpreting these sorts of structure within the narrow-line region of Seyfert galaxies.

The parsec-scale structure of jet-driven H I out ows in radio galaxies

Proceedings of the International Astronomical Union

Radio jets can play multiple roles in the feedback loop by regulating the accretion of the gas, by enhancing gas turbulence, and by driving gas outflows. Numerical simulations are beginning to make detailed predictions about these processes. Using high resolution VLBI observations we test these predictions by studying how radio jets of different power and in different phases of evolution affect the properties and kinematics of the surrounding H I gas. Consistent with predictions, we find that young (or recently restarted) radio jets have stronger impact as shown by the presence of H I outflows. The outflowing medium is clumpy with clouds of with sizes up to a few tens of pc and mass ∼ 104Mȯ) already in the region close to the nucleus (< 100 pc), making the jet interact strongly and shock the surrounding gas. We present a case of a low-power jet where, as suggested by the simulations, the injection of energy may produce an increase in the turbulence of the medium instead of an out...

Interaction of jets with the ISM of radio galaxies

Astrophysics and Space Science, 2007

We present three dimensional simulations of the interaction of a light hypersonic jet with an inhomogeneous thermal and turbulently supported disk in an elliptical galaxy. These simulations are applicable to the GPS/CSS phase of some extragalactic radio sources. We identify four generic phases in the evolution of such a jet with the interstellar medium. The first is a 'flood and channel" phase, dominated by complex jet interactions with the dense cloudy medium close to the nucleus. This is characterized by high pressure jet gas finding changing weak points in the ISM and flowing through channels that form and reform over time. A spherical, energy driven, bubble phase ensues, wherein the bubble is larger than the disk scale, but the jet remains fully disrupted close to the nucleus, so that the jet flux is thermalised and generates a smooth isotropic energy-driven bubble. In the subsequent, rapid, jet break-out phase the jet breaks free of the last obstructing dense clouds, becomes collimated and pierces the more or less spherical bubble. In the final classical phase, the jet propagates in a momentum-dominated fashion similar to jets in single component hot haloes, leading to the classical jet-cocoonbow-shock structure.

A Uniform Description of All the Astrophysical Jets

Proceedings of Frontier Research in Astrophysics — PoS(FRAPWS2014)

In this talk (at Mondello) I attempt to sketch my understanding of the universal working scheme of all the astrophysical jet sources, or 'bipolar flows', on both stellar and galactic scales, also called 'microquasars', and 'quasars'. A crucial building block will be their medium: extremely relativistic e ±-pair plasma performing quasi loss-free E x B-drifts through self-rammed channels, whose guiding equi-partition E-and B-fields convect the electric potential necessary for eventual single-step post-acceleration, at their 'knots' and terminating 'hotspots', or 'heads'. These electromagnetic fields convect half of the jet's power. The indispensible pair plasma is generated in magnetospheric reconnections of the heavy central rotator. Already for this reason, black holes cannot serve as jet engines. During its passage from subsonic to supersonic propagation, still inside its deLaval nozzle, the escaping relativistic pair-plasma passes from a relativistic Maxwellian distribution (almost) to that of a (mono-energetic) Deltafunction, of (uniform) Lorentz-factor γ = 10 2±2. Clearly, this transition in velocity distribution-in transit through the deLaval nozzle-is not loss-free; it turns the jet engine into a powerful γ-ray emitter, with photon frequencies reaching up to 10 26 Hz, (corresponding to electron Lorentz factors γ 10 6), see page 120 of Kundt & Krishna [2004]. So far, all the jets were treated as though propagating in vacuum, as "bare jets". New in this presentation will be an allowance for an embedding medium of non-negligible density, most notably encountered in SS 433 (with its fast-moving X-ray and optical spectral lines), but likewise in our Galactic twin jet. Such an embedding medium, gas or plasma, will try to penetrate into the jet channels, but will instead be expelled, and dragged along by the streaming, extremely relativistic pair plasma, in the form of subrelativistically comoving channel-wall material. In this way, bare jets are converted into (line-and continuum-) emitting "dressed jets".

A relativistic mixing-layer model for jets in low-luminosity radio galaxies

Monthly Notices of the Royal Astronomical Society, 2009

We present an analytical model for jets in Fanaroff & Riley Class I (FR I) radio galaxies, in which an initially laminar, relativistic flow is surrounded by a shear layer. We apply the appropriate conservation laws to constrain the jet parameters, starting the model where the radio emission is observed to brighten abruptly. We assume that the laminar flow fills the jet there and that pressure balance with the surroundings is maintained from that point outwards. Entrainment continuously injects new material into the jet and forms a shear layer, which contains material from both the environment and the laminar core. The shear layer expands rapidly with distance until finally the core disappears, and all of the material is mixed into the shear layer. Beyond this point, the shear layer expands in a cone and decelerates smoothly. We apply our model to the well-observed FR I source 3C 31 and show that there is a self-consistent solution. We derive the jet power, together with the variations of mass flux and entrainment rate with distance from the nucleus. The predicted variation of bulk velocity with distance in the outer parts of the jets is in good agreement with model fits to Very Large Array observations. Our prediction for the shape of the laminar core can be tested with higher-resolution imaging.

Astrophysical jets and outflows

Advances in Space Research, 2005

Highly collimated supersonic jets and less collimated outflows are observed to emerge from a wide variety of astrophysical objects. They are seen in young stellar objects (YSOs), proto-planetary nebulae, compact objects (like galactic black holes or microquasars, and X-ray binary stars), and in the nuclei of active galaxies (AGNs). Despite their different physical scales (in size, velocity, and amount of energy transported), they have strong morphological similarities. What physics do they share? These systems are either hydrodynamic or magnetohydrodynamic (MHD) in nature and are, as such, governed by non-linear equations. While theoretical models helped us to understand the basic physics of these objects, numerical simulations have been allowing us to go beyond the one-dimensional, steady-state approach extracting vital information. In this lecture, the formation, structure, and evolution of the jets are reviewed with the help of observational information, MHD and purely hydrodynamical modeling, and numerical simulations. Possible applications of the models particularly to YSOs and AGN jets are addressed. 1 1 pc = 1 parsec = 3.086 10 18 cm. 2 1 M = one solar mass = 1.99 10 33 g 3 1 L = one solar luminosity unit = 3.826 10 33 erg/s

Jet-Induced Emission-Line Nebulosity and Star Formation in the High-Redshift Radio Galaxy 4C41.17

1999

The high redshift radio galaxy 4C41.17 consists of a powerful radio source in which previous work has shown that there is strong evidence for jet-induced star formation along the radio axis. We argue that nuclear photoionization is not responsible for the excitation of the emission line clouds and we construct a jet-cloud interaction model to explain the major features revealed by the data. The interaction of a high-powered jet with a dense cloud in the halo of 4C41.17 produces shock-excited emission-line nebulosity through ~1000 km/s shocks and induces star formation. The CIII to CIV line ratio and the CIV luminosity emanating from the shock, imply that the pre-shock density in the line-emitting cloud is high enough (~1-10 cm^-3) that shock initiated star formation could proceed on a timescale of order a few x 10^6 yrs, well within the estimated dynamical age of the radio source. Broad (FWHM ~ 100 - 1400 km/s) emission lines are attributed to the disturbance of the gas cloud by a partial bow--shock and narrow emission lines (FWHM ~ 500 - 650 km/s) (in particular CIV) arise in precursor emission in relatively low metallicity gas. The implied baryonic mass ~ 8 \times 10^{10} solar masses of the cloud is high and implies that Milky Way size condensations existed in the environments of forming radio galaxies at a redshift of 3.8. Our interpretation of the data provides a physical basis for the alignment of the radio, emission-line and UV continuum images in some of the highest redshift radio galaxies and the analysis presented here may form a basis for the calculation of densities and cloud masses in other high redshift radio galaxies.

Radio observations of jets from massive young stars

Proceedings of the International Astronomical Union, 2010

The formation of low mass stars takes place with the assistance of an accretion disk that transports gas and dust from the envelope of the system to the star, and a jet that removes angular momentum and allows accretion to proceed. In the radio, these ionized jets can be studied very close to the star via the thermal (free-free) emission they produce and at larger scales by the molecular outflows that result from their interaction with the surrounding medium. Is the same disk-jet process responsible for the formation of massive stars? I will review recent evidence for the presence of collimated jets and accretion disks in association with forming massive stars. The jets in massive protostars have large velocities that could produce a synchrotron component and I discuss the evidence for the presence of this non-thermal process in the jet associated with the HH 80-81 system.