On the development of a method for cognitive load assessment in manufacturing (original) (raw)

Cognitive Ergonomics of Assembly Work from a Job Demands–Resources Perspective: Three Qualitative Case Studies

International Journal of Environmental Research and Public Health, 2021

In manufacturing companies, cognitive processing is required from assembly workers to perform correct and timely assembly of complex products, often with varied specifications and high quality demands. This paper explores assembly operators’ perceptions of cognitive/mental workload to provide a holistic understanding of the work conditions that affect cognitive demands and performance. While the physical loading aspects of assembly work are well known, most empirical literature dealing with cognitive/mental loading in manufacturing tends to examine a few particular aspects, rather than address the issue with a holistic system view. This semi-structured interview study, involving 50 industrial assembly operators from three Swedish companies, explores how assemblers perceive that their cognitive performance and well-being is influenced by a wide variety of factors within the context of mechanical product assembly. The interview transcripts were analysed using a priori coding, followed...

Cognitive load measurement as a means to advance cognitive load theory

Educational Psychologist, 2003

In this article, we discuss cognitive load measurement techniques with regard to their contribution to cognitive load theory (CLT). CLT is concerned with the design of instructional methods that efficiently use people's limited cognitive processing capacity to apply acquired knowledge and skills to new situations (i.e., transfer). CLT is based on a cognitive architecture that consists of a limited working memory with partly independent processing units for visual and auditory information, which interacts with an unlimited long-term memory. These structures and functions of human cognitive architecture have been used to design a variety of novel efficient instructional methods. The associated research has shown that measures of cognitive load can reveal important information for CLT that is not necessarily reflected by traditional performance-based measures. Particularly, the combination of performance and cognitive load measures has been identified to constitute a reliable estimate of the mental efficiency of instructional methods. The discussion of previously used cognitive load measurement techniques and their role in the advancement of CLT is followed by a discussion of aspects of CLT that may benefit by measurement of cognitive load. Within the cognitive load framework, we also discuss some promising new techniques.

Cognitive and metabolic workload assessment techniques: A review in automotive manufacturing context

Human Factors and Ergonomics in Manufacturing & Service Industries, 2021

Ergonomics assessment in the automotive industry has, to date, focused mainly on physical ergonomics, for example, manual handling and posture. However, workload and, in particular, metabolic and cognitive workload, contributes to worker efficiency but has not received sufficient attention to yield practical guidance for industry. Successful workload assessment requires in-depth understanding of the context in which it will be conducted and of the various assessment techniques which will be applied, with consideration given to factors such as feasibility, resources, and skill of the assessor. These requirements are met with challenges within large and complex organizations and are often dealt with in a piecemeal and isolated matter (i.e., reactive workload assessment). The present paper explores these challenges within the automotive manufacturing industry and aims to develop a decision matrix to guide effective selection of workload assessment techniques focused on metabolic and cognitive demands. It also presents the requirements for time, equipment, and knowledge to implement these techniques as part of a participatory ergonomics approach. Early findings suggest that most assessment techniques reviewed require further development, for example, to establish the acceptance criteria for the specific workload scenario. However, five methods (Garg, Borg RPE, IPAQ, SWAT, and NASA-TLX) are ready to use in certain applications. Ultimately, the findings suggest that it is possible to implement a participatory workload evaluation program within large and complex manufacturing plants.

Taming a beast of burden – On some issues with the conceptualisation and operationalisation of cognitive load

Learning and Instruction, 2010

Research on cognitive load theory (CLT) has not yet provided facet-specific measures of cognitive load. The lack of valid methods to measure intrinsic, extraneous and germane cognitive load makes it difficult to empirically test theoretical explanations of effects caused by manipulations of instructional designs. This situation also imposes challenges to testing CLT as a theory. This paper critically reflects the conceptualisation of CLT's core concept and the implications for its operationalisation. In order to address some of the challenges we propose a complexity framework that allows the derivation of a priori estimates of mental load that go beyond CLT's notion of element interactivity. In a study we test hypotheses with regard to effects of the variation of sources for intrinsic cognitive load (increase of complexity within tasks) and the variation of sources for extraneous cognitive load (reduction of extraneous cognitive load between tasks) in three ability groups. Complexity-based estimates prove superior to element interactivity-based estimates of mental load in the prediction of performance outcomes. Results also indicate that individual differences in information-processing capacity determine to what extent complexity is reflected as cognitive load. In this respect the proposed framework extends the focus of CLT beyond the discussion of the role of prior knowledge and acquired levels of expertise.

Exploring the Cognitive Workload Assessment According to Human-Centric Principles in Industry 5.0

Advances in Production Management Systems, 2024

Industry 4.0 and 5.0 paradigms have been crucial for companies in employing digital technologies as an ally for men to free them from dangerous and routine tasks in favour of higher value tasks, putting humans at the centre of the organization as the decision maker. However, on the one hand, the new industrial systems shift to new tasks requiring more 'cognitive' than 'physical' efforts; on the other hand, the approaches to assess the cognitive workload and ensure the physical well-being of the operators are far to be considered easily applicable. For this reason, this research reveals current research trajectories and explores the cognitive workload using subjective and objective indicators. The discussion highlights cognitive ergonomics and advocates for a harmonious balance between human and machine capabilities. It identifies factors contributing to cognitive overload in manufacturing and maps their interconnections. The analysis of recent research trends reveals a growing adoption of new approaches requiring the adoption of physiological measurements (e.g., electrocardiogram (ECG), electroencephalography (EEG), Electromyography (EMG), etc.). Finally, this investigation offers insights into future research directions, urging a nuanced exploration of industrial activities and addressing cognitive workload across organisational layers in the context of Industry 5.0.

Cognitive demands and mental workload: A filed study of the mining control room operators

Heliyon, 2022

Cognitive demand and mental workload assessment are essential for the optimal interaction of human-machine systems. The aim of this study was to investigate the cognitive demands and mental workload as well as the relationship between them among the mining control room operators. This cross-sectional study was performed on 63 control room operators of a large mining plant located in Iran. Cognitive demands and mental workload were assessed using cognitive task analysis (CTA) and NASA Task Load Index (NASA-TLX), respectively and the analysis was performed using SPSS version 21. Independent samples Ttest, Mann-Whitney U test and multivariate linear regression were used for data analysis. Twelve cognitive demands were extracted after observing the tasks and conducting semi-structured interviews with the control room staff. The mean scores of total cognitive demands and MWL were 6.60 and 72.89, respectively, and these two indicators showed a positive and significant correlation (r ¼ 0.286; P ¼ 0.023). The participants' demographic characteristics such as age, education, and work experience did not affect mental workload, but the two cognitive demands (memory and defect detection) affected MWL. High cognitive demands and mental workload indicate poor interaction between humans and machines. Due to the effect of memory load and defect detection on mental workload, it is recommended to assign cognitive tasks based on memory and defect detection to the machine to reduce the mental workload and improve humanmachine interaction.

What is the relationship between mental workload factors and cognitive load types

International Journal of Psychophysiology, 2012

The present study tested the hypothesis of an additive interaction between intrinsic, extraneous and germane cognitive load, by manipulating factors of mental workload assumed to have a specific effect on either type of cognitive load. The study of cognitive load factors and their interaction is essential if we are to improve workers' wellbeing and safety at work. High cognitive load requires the individual to allocate extra resources to entering information. It is thought that this demand for extra resources may reduce processing efficiency and performance. The present study tested the effects of three factors thought to act on either cognitive load type, i.e. task difficulty, time pressure and alertness in a working memory task. Results revealed additive effects of task difficulty and time pressure, and a modulation by alertness on behavioral, subjective and psychophysiological workload measures. Mental overload can be the result of a combination of task-related components, but its occurrence may also depend on subject-related characteristics, including alertness. Solutions designed to reduce incidents and accidents at work should consider work organization in addition to task constraints in so far that both these factors may interfere with mental workload.