Post-Translational Tubulin Modifications in Differentiated Human Neural Stem Cells (original) (raw)

The emerging role of the tubulin code: From the tubulin molecule to neuronal function and disease

Cytoskeleton, 2016

Across different cell types and tissues, microtubules are assembled from highly conserved dimers of a-and b-tubulin. Despite their highly similar structures, microtubules have functional heterogeneity, generated either by the expression of different tubulin genes, encoding distinct isotypes, or by posttranslational modifications of tubulin. This genetically encoded and posttranslational generated heterogeneity of tubulinthe "tubulin code"-has the potential to modulate microtubule structure, dynamics, and interactions with associated proteins. The tubulin code is therefore believed to regulate microtubule functions on a cellular and sub-cellular level. This review highlights the importance of the tubulin code for tubulin structure, as well as on microtubule dynamics and functions in neurons. It further summarizes recent developments in the understanding of mutations in tubulin genes, and how they are linked to neurodegenerative and neurodevelopmental disorders. The current advances in the knowledge of the tubulin code on the molecular and the functional level will certainly lead to a better understanding of how complex signaling events control microtubule functions, especially in cells of the nervous system. V

Deciphering the Tubulin Language: Molecular Determinants and Readout Mechanisms of the Tubulin Code in Neurons

International Journal of Molecular Sciences

Microtubules (MTs) are dynamic components of the cell cytoskeleton involved in several cellular functions, such as structural support, migration and intracellular trafficking. Despite their high similarity, MTs have functional heterogeneity that is generated by the incorporation into the MT lattice of different tubulin gene products and by their post-translational modifications (PTMs). Such regulations, besides modulating the tubulin composition of MTs, create on their surface a “biochemical code” that is translated, through the action of protein effectors, into specific MT-based functions. This code, known as “tubulin code”, plays an important role in neuronal cells, whose highly specialized morphologies and activities depend on the correct functioning of the MT cytoskeleton and on its interplay with a myriad of MT-interacting proteins. In recent years, a growing number of mutations in genes encoding for tubulins, MT-interacting proteins and enzymes that post-translationally modify...

Post-Translational Tubulin Modifications in Human Astrocyte Cultures

Neurochemical research, 2017

The cytoskeletal protein tubulin plays an integral role in the functional specialization of many cell types. In the central nervous system, post-translational modifications and the expression of specific tubulin isotypes in neurons have been analyzed in greater detail than in their astrocytic counterparts. In this study, we characterized post-translational specifications of tubulin in human astrocytes using the normal human astrocyte (NHA; Lonza) commercial cell line of fetal origin. Immunocytochemical techniques were implemented in conjunction with confocal microscopy to image class III β-tubulin (βIII-tubulin), acetylated tubulin, and polyglutamylated tubulin using fluorescent antibody probes. Fluorescent probe intensity differences and colocalization were quantitatively assessed with the 'EBImage' package for the statistical programming language R. Colocalization analysis revealed that, although both acetylated tubulin and polyglutamylated tubulin showed a high degree of ...

Regulation of α- and β-tubulin mRNAs in rat brain during synaptogenesis

Molecular Brain Research, 1987

Developmental alterations in a-and fl-tubulin mRNA in polysomes from brains of-3 days (fetal) to 30-day-old rats were quantitated by using well-characterized chicken a-and fl-tubulin cDNA probes, pT 1 and pT 2 having 80-90% homology with rat sequences. Northern blot analysis revealed a single major (> 95%) 1.8 kb mRNA for both a-and fl-tubulin. Quantitation by slot hybridization indicates a virtually coordinate expression of a-and fl-tubulin mRNA with a maximal level around day 5 after birth, which represents the mid-phase of synaptogenesis.

Mutations in the neuronal β-tubulin subunit TUBB3 result in malformation of cortical development and neuronal migration defects

Human Molecular Genetics, 2010

Mutations in the TUBB3 gene, encoding b-tubulin isotype III, were recently shown to be associated with various neurological syndromes which all have in common the ocular motility disorder, congenital fibrosis of the extraocular muscle type 3 (CFEOM3). Surprisingly and in contrast to previously described TUBA1A and TUBB2B phenotypes, no evidence of dysfunctional neuronal migration and cortical organization was reported. In our study, we report the discovery of six novel missense mutations in the TUBB3 gene, including one fetal case and one homozygous variation, in nine patients that all share cortical disorganization, axonal abnormalities associated with pontocerebellar hypoplasia, but with no ocular motility defects, CFEOM3. These new findings demonstrate that the spectrum of TUBB3-related phenotype is broader than previously described and includes malformations of cortical development (MCD) associated with neuronal migration and differentiation defects, axonal guidance and tract organization impairment. Complementary functional studies revealed that the mutated bIII-tubulin causing the MCD phenotype results in a reduction of heterodimer formation, yet produce correctly formed microtubules (MTs) in mammalian cells. Further to this, we investigated the properties of the MT network in patients' fibroblasts and revealed that MCD mutations can alter the resistance of MTs to depolymerization. Interestingly, this finding contrasts with the increased MT stability observed in the case of CFEOM3-related mutations. These results led us to hypothesize that either MT dynamics or their interactions with various MT-interacting proteins could be differently affected by TUBB3 variations, thus resulting in distinct alteration of downstream processes and therefore explaining the phenotypic diversity of the TUBB3-related spectrum.

The role of α-tubulin tyrosination in controlling the structure and function of hippocampal neurons

Frontiers in Molecular Neuroscience

Microtubules (MTs) are central components of the neuronal cytoskeleton and play a critical role in CNS integrity, function, and plasticity. Neuronal MTs are diverse due to extensive post-translational modifications (PTMs), particularly detyrosination/tyrosination, in which the C-terminal tyrosine of α-tubulin is cyclically removed by a carboxypeptidase and reattached by a tubulin-tyrosine ligase (TTL). The detyrosination/tyrosination cycle of MTs has been shown to be an important regulator of MT dynamics in neurons. TTL-null mice exhibit impaired neuronal organization and die immediately after birth, indicating TTL function is vital to the CNS. However, the detailed cellular role of TTL during development and in the adult brain remains elusive. Here, we demonstrate that conditional deletion of TTL in the neocortex and hippocampus during network development results in a pathophysiological phenotype defined by incomplete development of the corpus callosum and anterior commissures due ...

Tubulin cofactor B plays a role in the neuronal growth cone

Journal of Neurochemistry, 2007

Tubulin cofactors, initially identified as a-, b-tubulin folding proteins, are now believed to participate in the complex tubulin biogenesis and degradation routes, and thus to contribute to microtubule functional diversity and dynamics. However, a concrete role of tubulin cofactor B (TBCB) remains to be elucidated because this protein is not required for tubulin biogenesis, and it is apparently not essential for life in any of the organisms studied. In agreement with these data, here we show that TBCB localizes at the transition zone of the growth cones of growing neurites during neurogenesis where it plays a role in microtubule dynamics and plasticity. Gene silencing by means of small interfering RNA segments revealed that TBCB knockdown enhances axonal growth. In contrast, excess TBCB, a feature of giant axonal neuropathy, leads to microtubule depolymerization, growth cone retraction, and axonal damage followed by neuronal degeneration. These results provide an important insight into the understanding of the controlling mechanisms of growth cone microtubule dynamics.

Beta tubulin isoforms are not interchangeable for rescuing impaired radial migration due to Tubb3 knockdown

Human Molecular Genetics, 2014

Over the last years, the critical role of cytoskeletal proteins in cortical development including neuronal migration as well as in neuronal morphology has been well established. Inputs from genetic studies were provided through the identification of several mutated genes encoding either proteins associated with microtubules (DCX, LIS1, KIF2A, KIF5C, DYNC1H1) or tubulin subunits (TUBA1A, TUBB2B, TUBB5 and TUBG1), in malformations of cortical development (MCD). We also reported the identification of missense mutations in TUBB3, the post-mitotic neuronal specific tubulin, in 6 different families presenting either polymicrogyria or gyral disorganization in combination with cerebellar and basal ganglial abnormalities. Here, we investigate further the association between TUBB3 mutations and MCDs by analyzing the consequences of Tubb3 knockdown on cortical development in mice. Using the in utero electroporation approach, we demonstrate that Tubb3 knockdown leads to delayed bipolar morphology and radial migration with evidence suggesting that the neuronal arrest is a transient phenomenon overcome after birth. Silenced blocked cells display a round shape and decreased number of processes and a delay in the acquisition of the bipolar morphology. Also, more Tbr2 positive cells are observed, although less cells express the proliferation marker Ki67, suggesting that Tubb3 inactivation might have an indirect effect on intermediate progenitor proliferation. Furthermore, we show by rescue experiments the non interchangeability of other beta-tubulins which are unable to rescue the phenotype. Our study highlights the critical and specific role of Tubb3 on the stereotyped morphological changes and polarization processes that are required for initiating radial migration to the cortical plate. by guest on March 30, 2016 http://hmg.oxfordjournals.org/ Downloaded from