TasA-tasB, a new putative toxin-antitoxin (TA) system from Bacillus thuringiensis pGI1 plasmid is a widely distributed composite mazE-doc TA system (original) (raw)

Complete Sequence and Organization of pBtoxis, the Toxin-Coding Plasmid of Bacillus thuringiensis subsp. israelensis

Applied and Environmental Microbiology, 2002

The entire 127,923-bp sequence of the toxin-encoding plasmid pBtoxis from Bacillus thuringiensis subsp. israelensis is presented and analyzed. In addition to the four known Cry and two known Cyt toxins, a third Cyt-type sequence was found with an additional C-terminal domain previously unseen in such proteins. Many plasmid-encoded genes could be involved in several functions other than toxin production. The most striking of these are several genes potentially affecting host sporulation and germination and a set of genes for the production and export of a peptide antibiotic.

Complete Sequence and Organization of pBtoxis, the Toxin-Coding Plasmid of Bacillus thuringiensis subsp. israelensis

Applied and Environmental Microbiology, 2002

The entire 127,923-bp sequence of the toxin-encoding plasmid pBtoxis from Bacillus thuringiensis subsp. israelensis is presented and analyzed. In addition to the four known Cry and two known Cyt toxins, a third Cyt-type sequence was found with an additional C-terminal domain previously unseen in such proteins. Many plasmid-encoded genes could be involved in several functions other than toxin production. The most striking of these are several genes potentially affecting host sporulation and germination and a set of genes for the production and export of a peptide antibiotic.

Large Crystal Toxin Formation in Chromosomally Engineered Bacillus thuringiensis subsp. aizawai Due to E Accumulation

Applied and Environmental Microbiology, 2012

ABSTRACTSeven distinctBacillus thuringiensissubsp.aizawaiintegrants were constructed that carried the chitinase (chiBlA) gene fromB. licheniformisunder the control of thecry11Aapromoter and terminator with and withoutp19andp20genes. The toxicity ofB. thuringiensissubsp.aizawaiintegrants against second-instarSpodoptera lituralarvae was increased 1.8- to 4.6-fold compared to that of the wild-type strain (BTA1). Surprisingly, the enhanced toxicity in some strains ofB. thuringiensissubsp.aizawaiintegrants (BtaP19CS,BtaP19CSter, andBtaCAT) correlated with an increase in toxin formation. To investigate the role of these genes in toxin production, the expression profiles of the toxin genes,cry1AaandchiBlA, as well as their transcriptional regulators (sigKandsigE), were analyzed by quantitative real-time RT-PCR (qPCR) from BTA1,BtaP19CS, andBtaCAT. Expression levels ofcry1Aain these two integrants increased about 2- to 3-fold compared to those of BTA1. The expression of the transcription fa...

Large Crystal Toxin Formation in Chromosomally Engineered Bacillus thuringiensis subsp. aizawai Due to σ E Accumulation

Applied and Environmental Microbiology, 2012

Seven distinct Bacillus thuringiensis subsp. aizawai integrants were constructed that carried the chitinase (chiBlA) gene from B. licheniformis under the control of the cry11Aa promoter and terminator with and without p19 and p20 genes. The toxicity of B. thuringiensis subsp. aizawai integrants against second-instar Spodoptera litura larvae was increased 1.8-to 4.6-fold compared to that of the wild-type strain (BTA1). Surprisingly, the enhanced toxicity in some strains of B. thuringiensis subsp. aizawai integrants (BtaP19CS, BtaP19CSter, and BtaCAT) correlated with an increase in toxin formation. To investigate the role of these genes in toxin production, the expression profiles of the toxin genes, cry1Aa and chiBlA, as well as their transcriptional regulators (sigK and sigE), were analyzed by quantitative real-time RT-PCR (qPCR) from BTA1, BtaP19CS, and BtaCAT. Expression levels of cry1Aa in these two integrants increased about 2-to 3-fold compared to those of BTA1. The expression of the transcription factor sigK also was prolonged in the integrants compared to that of the wild type; however, sigE expression was unchanged. Western blot analysis of E and K showed the prolonged accumulation of E in the integrants compared to that of BTA1, resulting in the increased synthesis of pro-K up to T 17 after the onset of sporulation in both BtaP19CS and BtaCAT compared to that of T 13 in BTA1. The results from qPCR indicate clearly that the cry1Aa promoter activity was influenced most strongly by E , whereas cry11Aa depended mostly on K. These results on large-crystal toxin formation with enhanced toxicity should provide useful information for the generation of strains with improved insecticidal activity.

The Occurrence of Photorhabdus-Like Toxin Complexes in Bacillus thuringiensis

PLoS ONE, 2011

Recently, genomic sequencing of a Bacillus thuringiensis (Bt) isolate from our collection revealed the presence of an apparent operon encoding an insecticidal toxin complex (Tca) similar to that first described from the entomopathogen Photorhabdus luminescens. To determine whether these genes are widespread among Bt strains, we screened isolates from the collection for the presence of tccC, one of the genes needed for the expression of fully functional toxin complexes. Among 81 isolates chosen to represent commonly encountered biochemical phenotypes, 17 were found to possess a tccC. Phylogenetic analysis of the 81 isolates by multilocus sequence typing revealed that all the isolates possessing a tccC gene were restricted to two sequence types related to Bt varieties morrisoni, tenebrionis, israelensis and toumanoffi. Sequencing of the ,17 kb tca operon from two isolates representing each of the two sequence types revealed .99% sequence identity. Optical mapping of DNA from Bt isolates representing each of the sequence types revealed nearly identical plasmids of ca. 333 and 338 kbp, respectively. Selected isolates were found to be toxic to gypsy moth larvae, but were not as effective as a commercial strain of Bt kurstaki. Some isolates were found to inhibit growth of Colorado potato beetle. Custom TaqmanH relative quantitative real-time PCR assays for Tc-encoding Bt revealed both tcaA and tcaB genes were expressed within infected gypsy moth larvae.

Cloning and expression of the lepidopteran toxin produced by Bacillus thuringiensis var. thuringiensis in Escherichia coli

Gene, 1986

Cloning and expression of the lepidopteran toxin produced by ~aciZ~~s t~uringie~sis var. t~uri~gie~sis in Escherichia coli (Recombinant DNA; plasmid size determination; pACYC; restriction analysis; colony hybridization, bioassay) SUMMARY The BaciZlus thuringiensis var. thuringiensis strain 3A produces a proteinaceous parasporal crystal toxic to larvae of a variety of lepidopteran pests including Spodoptera littoralis (Egyptian cotton leaf worm), Heliothis zeae, H. virescens and Boarmia selenaria. By cloning of individual plasmids of B. thuringiensis in Escherichia coli, we localized a gene coding for the delta-endotoxin on the B. thuringiensis plasmid of about 17 kb designated pTN4. Following partial digestion of the B. th~r~ngiensjs plasmid pTN4 and cloning into the E. co/i pACYC 184 plasmid three clones were isolated in which toxin production was detected. One of these hybrid plasmids pTNG43 carried a 1.7-kb insert that hybridized to the 14-kb BumHI DNA fragments of B. thuringiensis var. thuringiensis strains 3A and berliner 1715. This BamHI DNA fragment of strain bet-finer 17 15 has been shown to contain the gene that codes for the toxic protein of the crystal . No homologous sequences have been found between pTNG33 and the DNA of B. thu~ngie~is var. e~tomocidMs strain 24, which exhibited insecticidal activity against S. littoralis similar to that of strain 3A.