Surface-based versus volume-based fMRI group analysis: a case study (original) (raw)

Being able to detect reliably functional activity in a population of subjects is crucial in human brain mapping, both for the understanding of cognitive functions in normal subjects and for the analysis of patient data. The usual approach proceeds by normalizing brain volumes to a common 3D template. However, a large part of the data acquired in fMRI aims at localizing cortical activity, and methods working on the cortical surface may provide better inter-subject registration than the standard procedures that process the data in 3D. Nevertheless, few assessments of the performance of surface-based (2D) versus volume-based (3D) procedures have been shown so far, mostly because inter-subject cortical surface maps are not easily obtained. In this paper we present a systematic comparison of 2D versus 3D group-level inference procedures, by using cluster-level and voxel-level statistics assessed by permutation, in random effects (RFX) and mixed-effects analyses (MFX). We find that, using a voxel-level thresholding, and to some extent, cluster-level thresholding, the surface-based approach generally detects more, but smaller active regions than the corresponding volume-based approach for both RFX and MFX procedures, and that surface-based supra-threshold regions are more reproducible by bootstrap.