The architecture of the Gram-positive bacterial cell wall (original) (raw)

Architecture and assembly of the Gram-positive cell wall

The bacterial cell wall is a mesh polymer of peptidoglycan -linear glycan strands cross-linked by flexible peptides -that determines cell shape and provides physical protection. While the glycan strands in thin 'Gram-negative' peptidoglycan are known to run circumferentially around the cell, the architecture of the thicker 'Gram-positive' form remains unclear. Using electron cryotomography, here we show that Bacillus subtilis peptidoglycan is a uniformly dense layer with a textured surface. We further show it rips circumferentially, curls and thickens at free edges, and extends longitudinally when denatured. Molecular dynamics simulations show that only atomic models based on the circumferential topology recapitulate the observed curling and thickening, in support of an 'inside-to-outside' assembly process. We conclude that instead of being perpendicular to the cell surface or wrapped in coiled cables (two alternative models), the glycan strands in Gram-positive cell walls run circumferentially around the cell just as they do in Gram-negative cells. Together with providing insights into the architecture of the ultimate determinant of cell shape, this study is important because Gram-positive peptidoglycan is an antibiotic target crucial to the viability of several important rod-shaped pathogens including Bacillus anthracis, Listeria monocytogenes, and Clostridium difficile.

Cell wall elongation mode in Gram-negative bacteria is determined by peptidoglycan architecture

Nature Communications, 2013

Cellular integrity and morphology of most bacteria is maintained by cell wall peptidoglycan, the target of antibiotics essential in modern healthcare. It consists of glycan strands, cross-linked by peptides, whose arrangement determines cell shape, prevents lysis due to turgor pressure and yet remains dynamic to allow insertion of new material, and hence growth. The cellular architecture and insertion pattern of peptidoglycan have remained elusive. Here we determine the peptidoglycan architecture and dynamics during growth in rod-shaped Gram-negative bacteria. Peptidoglycan is made up of circumferentially oriented bands of material interspersed with a more porous network. Super-resolution fluorescence microscopy reveals an unexpected discontinuous, patchy synthesis pattern. We present a consolidated model of growth via architecture-regulated insertion, where we propose only the more porous regions of the peptidoglycan network that are permissive for synthesis.

Imaging the nanoscale organization of peptidoglycan in living Lactococcus lactis cells

Nature Communications, 2010

The spatial organization of peptidoglycan, the major constituent of bacterial cell walls, is an important, yet still unsolved issue in microbiology. In this paper, we show that the combined use of atomic force microscopy and cell wall mutants is a powerful platform for probing the nanoscale architecture of cell wall peptidoglycan in living Gram-positive bacteria. Using topographic imaging, we found that Lactococcus lactis wild-type cells display a smooth, featureless surface morphology, whereas mutant strains lacking cell wall exopolysaccharides feature 25-nm-wide periodic bands running parallel to the short axis of the cell. In addition, we used single-molecule recognition imaging to show that parallel bands are made of peptidoglycan. Our data, obtained for the fi rst time on living ovococci, argue for an architectural feature of the cell wall in the plane perpendicular to the long axis of the cell. The non-invasive live cell experiments presented here open new avenues for understanding the architecture and assembly of peptidoglycan in Gram-positive bacteria. Figure 7 | Schematic drawing of the nanoscale organization of the L. lactis peptidoglycan. The cartoon emphasizes the outermost surface layers, that is, cell wall polysaccharides in WT cells, and peptidoglycan arranged as periodic bands in WPS − cells. ARTICLE 8 NATURE COMMUNICATIONS |

Peptidoglycan at its peaks: how chromatographic analyses can reveal bacterial cell wall structure and assembly

Molecular microbiology, 2013

The peptidoglycan (PG) cell wall is a unique macromolecule responsible for both shape determination and cellular integrity under osmotic stress in virtually all bacteria. A quantitative understanding of the relationships between PG architecture, morphogenesis, immune system activation and pathogenesis can provide molecular-scale insights into the function of proteins involved in cell wall synthesis and cell growth. High-performance liquid chromatography (HPLC) has played an important role in our understanding of the structural and chemical complexity of the cell wall by providing an analytical method to quantify differences in chemical composition. Here, we present a primer on the basic chemical features of wall structure that can be revealed through HPLC, along with a description of the applications of HPLC PG analyses for interpreting the effects of genetic and chemical perturbations to a variety of bacterial species in different environments. We describe the physical consequences...

Three-dimensional structure of the bacterial cell wall peptidoglycan

Proceedings of the National Academy of Sciences, 2006

The 3D structure of the bacterial peptidoglycan, the major constituent of the cell wall, is one of the most important, yet still unsolved, structural problems in biochemistry. The peptidoglycan comprises alternating N-acetylglucosamine (NAG) and N-acetylmuramic disaccharide (NAM) saccharides, the latter of which has a peptide stem. Adjacent peptide stems are cross-linked by the transpeptidase enzymes of cell wall biosynthesis to provide the cell wall polymer with the structural integrity required by the bacterium. The cell wall and its biosynthetic enzymes are targets of antibiotics. The 3D structure of the cell wall has been elusive because of its complexity and the lack of pure samples. Herein we report the 3D solution structure as determined by NMR of the 2-kDa NAG-NAM(pentapeptide)-NAG-NAM(pentapeptide) synthetic fragment of the cell wall. The glycan backbone of this peptidoglycan forms a right-handed helix with a periodicity of three for the NAG-NAM repeat (per turn of the helix). The first two amino acids of the pentapeptide adopt a limited number of conformations. Based on this structure a model for the bacterial cell wall is proposed. murein sacculus ͉ bacterial envelope T he peptidoglycan scaffold of the bacterial cell wall is a repeating N-acetylglucosamine (NAG)-N-acetylmuramic disaccharide (NAM) [NAG-(␤-1,4)-NAM] having a pentapeptide attached to the D-lactyl moiety of each NAM. This pentapeptide stem participates in an interglycan cross-linking reaction, thus creating the cell wall polymer. In contrast to the two other ␤-1,4-linked glycan biopolymers, cellulose (repeating glucose) (1-4) and chitin (repeating NAG) (5-7) for which the 3D structure is solved, the structure of the bacterial cell wall has remained elusive because of its complexity and the lack of pure and discrete segments for structural study . Herein we describe the 3D structure, determined in aqueous solution by NMR, of a 2-kDa synthetic NAG-NAM(pentapeptide)-NAG-NAM(pentapeptide) tetrasaccharide cell wall segment. The defining aspect of this structure is an ordered, right-handed helical saccharide conformation corresponding to three NAG-NAM pairs per turn of the helix. The structure of this peptidoglycan segment is the basis for a proposal for the structure of the bacterial cell wall polymer.

Reduction of the peptidoglycan crosslinking causes a decrease in stiffness of the Staphylococcus aureus cell envelope

Biophysical journal, 2014

We have used atomic-force microscopy (AFM) to probe the effect of peptidoglycan crosslinking reduction on the elasticity of the Staphylococcus aureus cell wall, which is of particular interest as a target for antimicrobial chemotherapy. Penicillin-binding protein 4 (PBP4) is a nonessential transpeptidase, required for the high levels of peptidoglycan crosslinking characteristic of S. aureus. Importantly, this protein is essential for β-lactam resistance in community-acquired, methicillin-resistant S. aureus (MRSA) strains but not in hospital-acquired MRSA strains. Using AFM in a new mode for recording force/distance curves, we observed that the absence of PBP4, and the concomitant reduction of the peptidoglycan crosslinking, resulted in a reduction in stiffness of the S. aureus cell wall. Importantly, the reduction in cell wall stiffness in the absence of PBP4 was observed both in community-acquired and hospital-acquired MRSA strains, indicating that high levels of peptidoglycan cro...

Cell Shape Can Mediate the Spatial Organization of the Bacterial Cytoskeleton

Biophysical Journal, 2013

The cell wall, a porous mesh-like structure, provides shape and physical protection for bacteria. At the atomic level, it is composed of peptidoglycan (PG), a polymer of stiff glycan strands cross-linked by short, flexible peptides. However, at the mesoscale, multiple models for the organization of PG have been put forth, distinguished by glycan strands parallel to the cell surface (the so-called "layered'' model) or perpendicular (the ''scaffold'' model). To test these models, and to resolve the mechanical properties of PG, we have built and simulated at an atomic scale patches of both Grampositive and negative cell walls in different organizations up to 50 nanometers in size. In the case of Gram-positive PG, molecular dynamics simulations of the layered model are found to elucidate the mechanisms behind a distinct curling effect observed in three-dimensional electron cryo-tomography images of fragmented cell walls. For Gram-negative PG, simulations of patches with different average-glycan-strand lengths reveal an anisotropic elasticity, in good agreement with atomic-force microscopy experiments. Insights from the simulations reveal how mesoscopic and macroscopic properties of a ubiquitous bacterial ultrastructure arise from its atomic-scale interactions and organization.

Multiparametric AFM reveals turgor-responsive net-like peptidoglycan architecture in live streptococci

Nature Communications, 2015

Cell-wall peptidoglycan (PG) of Gram-positive bacteria is a strong and elastic multi-layer designed to resist turgor pressure and determine the cell shape and growth. Despite its crucial role, its architecture remains largely unknown. Here using high-resolution multiparametric atomic force microscopy (AFM), we studied how the structure and elasticity of PG change when subjected to increasing turgor pressure in live Group B Streptococcus. We show a new net-like arrangement of PG, which stretches and stiffens following osmotic challenge. The same structure also exists in isogenic mutants lacking surface appendages. Cell aging does not alter the elasticity of the cell wall, yet destroys the net architecture and exposes single segmented strands with the same circumferential orientation as predicted for intact glycans. Together, we show a new functional PG architecture in live Gram-positive bacteria.