On first-passage-time and transition densities for strongly symmetric diffusion processes (original) (raw)

1997, Nagoya Mathematical Journal

One dimensional diffusion processes have been increasingly invoked to model a variety of biological, physical and engineering systems subject to random fluctuations (cf., for instance, Blake, I. F. and Lindsey, W. C. [2], Abrahams, J. [1], Giorno, V. et al [10] and references therein). However, usually the knowledge of the ‘free’ transition probability density function (pdf) is not sufficient; one is thus led to the more complicated task of determining transition functions in the presence of preassigned absorbing boundaries, or first-passage-time densities for time-dependent boundaries (see, for instance, Daniels, H. E. [6], [7], Giorno, V. et al. [10]). Such densities are known analytically only in some special instances so that numerical methods have to be implemented in general (cf., for instance, Buono-core, A. et al [3], [4], Giorno, V. et al [11]). The analytical approach becomes particularly effective when the diffusion process exhibits some special features, such as the symm...