Transfer of the Experimental Autoimmune Glaucoma Model from Rats to Mice—New Options to Study Glaucoma Disease (original) (raw)

Resistance of retinal ganglion cells to an increase in intraocular pressure is immune-dependent

Investigative ophthalmology & visual science, 2002

Glaucoma is widely accepted as a neurodegenerative disease in which retinal ganglion cell (RGC) loss is initiated by a primary insult to the optic nerve head, caused, for example, by increased intraocular pressure (IOP). In some cases, the surviving RGCs, despite adequate IOP control, may continue to degenerate as a result of their heightened susceptibility to self-destructive processes evoked by the initial damage. In animal models of mechanical or biochemical injury to the optic nerve or retina, a T-cell-mediated immune response evoked by the insult helps to reduce this ongoing loss. The current study was conducted to find out whether the ability to resist the IOP-induced loss of RGCs in a rat model is affected by the immune system. The ocular veins and limbal plexus of rats of two strains differing in their resistance to experimental autoimmune encephalomyelitis (EAE) and in their ability to manifest a beneficial autoimmune response were laser irradiated twice to induce an increa...

Vaccination for protection of retinal ganglion cells against death from glutamate cytotoxicity and ocular hypertension: Implications for glaucoma

Proceedings of The National Academy of Sciences, 2001

Our group recently demonstrated that autoimmune T cells directed against central nervous system-associated myelin antigens protect neurons from secondary degeneration. We further showed that the synthetic peptide copolymer 1 (Cop-1), known to suppress experimental autoimmune encephalomyelitis, can be safely substituted for the natural myelin antigen in both passive and active immunization for neuroprotection of the injured optic nerve. Here we attempted to determine whether similar immunizations are protective from retinal ganglion cell loss resulting from a direct biochemical insult caused, for example, by glutamate (a major mediator of degeneration in acute and chronic optic nerve insults) and in a rat model of ocular hypertension. Passive immunization with T cells reactive to myelin basic protein or active immunization with myelin oligodendrocyte glycoprotein-derived peptide, although neuroprotective after optic nerve injury, was ineffective against glutamate toxicity in mice and rats. In contrast, the number of surviving retinal ganglion cells per square millimeter in glutamate-injected retinas was significantly larger in mice immunized 10 days previously with Cop-1 emulsified in complete Freund's adjuvant than in mice injected with PBS in the same adjuvant (2,133 ؎ 270 and 1,329 ؎ 121, respectively, mean ؎ SEM; P < 0.02). A similar pattern was observed when mice were immunized on the day of glutamate injection (1,777 ؎ 101 compared with 1,414 ؎ 36; P < 0.05), but not when they were immunized 48 h later. These findings suggest that protection from glutamate toxicity requires reinforcement of the immune system by antigens that are different from those associated with myelin. The use of Cop-1 apparently circumvents this antigen specificity barrier. In the rat ocular hypertension model, which simulates glaucoma, immunization with Cop-1 significantly reduced the retinal ganglion cell loss from 27.8% ؎ 6.8% to 4.3% ؎ 1.6%, without affecting the intraocular pressure. This study may point the way to a therapy for glaucoma, a neurodegenerative disease of the optic nerve often associated with increased intraocular pressure, as well as for acute and chronic degenerative disorders in which glutamate is a prominent participant.

New perspectives of immunomodulation and neuroprotection in glaucoma

Central European Journal of Immunology

Glaucoma is the neurodegenerative disease of retinal ganglion cells. The main risk factor for glaucoma is increased intraocular pressure. The processes leading to cell death due to presence of the injury factor comprise multiple molecular mechanisms, as well as the immunological response. The knowledge of immunological mechanisms occurring in glaucomatous degeneration makes it possible to introduce glaucoma treatment modulating the cellular degradation. The glaucoma treatment of the future will make it possible not only to lower the intraocular pressure, but also to moderate the intracellular mechanisms in order to prevent retinal cell degeneration. Citicoline is a drug modulating glutamate excitotoxicity that is already in use. Rho kinase inhibitors were found to stimulate neurite growth and axon regeneration apart from lowering intraocular pressure. The complementary action of brimonidine is to increase neurotrophic factor (NTF) concentrations and inhibit glutamate toxicity. Immunomodulatory therapies with antibodies and gene therapies show promising effects in the current studies. The supplementation of NTFs prevents glaucomatous damage. Resveratrol and other antioxidants inhibit reactive oxygen species formation. Cell transplantation of stem cells, Schwann cells and nerve extracts was reported to be successful so far. Our review presents the most promising new strategies of neuroprotection and immunomodulation in glaucoma.

Immunological and molecular basics of the primary open angle glaucoma pathomechanism

Central European Journal of Immunology, 2021

Glaucoma is a degenerative process of the optic nerve. Increased intraocular pressure is believed to be the main factor leading to the glaucomatous damage. The in vitro and in vivo animal glaucoma research models provide insight into the molecular changes in the retina in response to the injury factor. The damage is a complex process incorporating molecular and immunological changes. Such changes involve NFκB activity and complement activation. The processes affect the human antigen, JNK, MAPK, p53, MT2 and DBA/2J molecular pathways, activate the autophagy processes and compromise neuroprotective mechanisms. Activation and inhibition of immunological responses contribute to cell injury. The immunological mechanisms of glaucomatous degeneration include glial response, the complement, tumor necrosis factor α (TNF-α) pathways and toll-like receptors athways. Oxidative stress and excitotoxicity are factors contributing to cell death in glaucoma. The authors present an up-to-date review of the mechanisms involved and update on research focusing on a possible innovative glaucoma treatment.

Complex Antibody Profile Changes in an Experimental Autoimmune Glaucoma Animal Model

Investigative Opthalmology & Visual Science, 2009

PURPOSE. Increased serum antibodies against heat shock protein 27 (HSP27) have been identified in patients with glaucoma. Immunization with HSP27 caused retinal ganglion cell (RGC) loss in animals. The authors analyzed whether HSP27 immunization not only causes RGC loss but also affects systemic antibody patterns. METHODS. Rats were immunized with HSP27 and were surveyed for 4, 5, and 6 weeks (groups 1-3). Control animals were humanely killed after 6 weeks (group 4). Intraocular pressure was measured before and 2 and 4 weeks after immunization. Fundus images were taken at the same time. Retinal flatmounts were prepared, and Brn-3a labeled RGCs were counted. Serum was collected during the study to detect antibody patterns against retinal antigens through Western blot analysis and mass spectrometry techniques. Patterns were analyzed by multivariate statistical techniques, and biomarkers were identified with the use of mass spectrometry. RESULTS. No significant changes in intraocular pressure were observed, and no fundus abnormalities were noted. The animals immunized with HSP27 showed lower RGC density than controls (P Ͻ 0.05). Two and 4 weeks after immunization, we detected a significant difference in antibody profiles between groups 1 and 4 (P Ͻ 0.05) and groups 3 and 4 (P Ͻ 0.05). Proteins with different antibody level expression after immunization included heat shock protein 90, ␣-enolase, and glyceraldehyde-3-phosphate dehydrogenase. CONCLUSIONS. After immunization with HSP27, animals showed IOP-independent RGC loss and changes in serum antibody patterns. Thus, this model might be a beneficial approach to study the development and effects of anti-retinal antibodies and their involvement in RGC loss.

Immunohistologic evidence for retinal glial cell changes in human glaucoma

Investigative ophthalmology & visual science, 2002

Glial cells are structurally and functionally linked to neuronal tissues. Pathologically, the cells may be activated and characterized by increased size and number and altered cellular properties. In glaucoma, pathologic mechanisms within the anterior optic nerve may include glial activation. This study examines morphologic changes of glial cells in the retinas of glaucomatous eyes compared with age-matched control retinas. Paraffin-processed or flatmounted retinas from 17 human donor eyes [7 normal (donor age, 87.3 +/- 8.3 years) and 10 glaucomatous (donor age, 87.1 +/- 6.9 years)] were examined. With immunohistochemical methods, retinal glial cells were stained with an antibody to glial fibrillary acidic protein (GFAP). The morphology of the glial cells in normal and glaucomatous retinas was evaluated with fluorescence microscopy. Three types of glial cells were identified in flatmounted retinas with differing distributions in the peripapillary region, the nerve fiber layer (NFL),...

Early pro-inflammatory cytokine elevations in the DBA/2J mouse model of glaucoma

Journal of neuroinflammation, 2015

Neuroinflammation-astrogliosis, microglial activation, and changes in cytokine signaling-is a prominent feature of neurodegenerative disorders. Glaucoma is a group of chronic neurodegenerative conditions that make up the leading cause of irreversible blindness worldwide. Neuroinflammation has been postulated to play a significant role in the pathogenesis and progression of glaucomatous neurodegeneration. Though much is known regarding inflammation in the eye in glaucoma, little is known about cytokine activity outside of the retina where pathologies develop early. We traced the primary visual projection from the eye to the superior colliculus (SC) in DBA/2J and DBA/2J.Gpnmb (+) (control) mice using the anterograde tracer cholera toxin-B (CTB) to assay axonal transport deficits. Forty-eight hours later, visual structures were microdissected from fresh tissue based on transport outcome. Using magnetic bead multiplexing assays, we measured levels of 20 cytokines in the retina, proximal...

Prospects for relevant glaucoma models with retinal ganglion cell damage in the rodent eye

Vision Research, 2002

Retinal ganglion cell (RGC) death is the end result of practically all diseases of the optic nerve, including glaucomatous optic neuropathy. Understanding the factors determining susceptibility of the retina or the optic nerve to glaucomatous damage, and the means to prevent it, requires good animal models. Here we review the different, current models in rodents that have been used to study RGC damage, discuss their value, and their adequacy as models for human glaucoma.

Retinal Molecular Changes Are Associated with Neuroinflammation and Loss of RGCs in an Experimental Model of Glaucoma

International Journal of Molecular Sciences

Signaling mediated by cytokines and chemokines is involved in glaucoma-associated neuroinflammation and in the damage of retinal ganglion cells (RGCs). Using multiplexed immunoassay and immunohistochemical techniques in a glaucoma mouse model at different time points after ocular hypertension (OHT), we analyzed (i) the expression of pro-inflammatory cytokines, anti-inflammatory cytokines, BDNF, VEGF, and fractalkine; and (ii) the number of Brn3a+ RGCs. In OHT eyes, there was an upregulation of (i) IFN-γ at days 3, 5, and 15; (ii) IL-4 at days 1, 3, 5, and 7 and IL-10 at days 3 and 5 (coinciding with downregulation of IL1-β at days 1, 5, and 7); (iii) IL-6 at days 1, 3, and 5; (iv) fractalkine and VEGF at day 1; and (v) BDNF at days 1, 3, 7, and 15. In contralateral eyes, there were (i) an upregulation of IL-1β at days 1 and 3 and a downregulation at day 7, coinciding with the downregulation of IL4 at days 3 and 5 and the upregulation at day 7; (ii) an upregulation of IL-6 at days 1,...