The Role of Prophage for Genome Diversification within a Clonal Lineage of Lactobacillus johnsonii: Characterization of the Defective Prophage LJ771 (original) (raw)
Related papers
Applied and Environmental Microbiology, 2008
Prophage Lrm1 was induced with mitomycin C from an industrial Lactobacillus rhamnosus starter culture, M1. Electron microscopy of the lysate revealed relatively few intact bacteriophage particles among empty heads and disassociated tails. The defective Siphoviridae phage had an isometric head of approximately 55 nm and noncontractile tail of about 275 nm with a small baseplate. In repeated attempts, the prophage could not be cured from L. rhamnosus M1, nor could a sensitive host be identified. Sequencing of the phage Lrm1 DNA revealed a genome of 39,989 bp and a G+C content of 45.5%. A similar genomic organization and mosaic pattern of identities align Lrm1 among the closely related Lactobacillus casei temperate phages A2, PhiAT3, and LcaI and with L. rhamnosus virulent phage Lu-Nu. Of the 54 open reading frames (ORFs) identified, all but 8 shared homology with other phages of this group. Five unknown ORFs were identified that had no homologies in the databases nor predicted functions. Notably, Lrm1 encodes a putative endonuclease and a putative DNA methylase with homology to a methylase in Lactococcus lactis phage Tuc2009. Possibly, the DNA methylase, endonuclease, or other Lrm1 genes provide a function crucial to L. rhamnosus M1 survival, resulting in the stability of the defective prophage in its lysogenic state. The presence of a defective prophage in an industrial strain could provide superinfection immunity to the host but could also contribute DNA in recombination events to produce new phages potentially infective for the host strain in a large-scale fermentation environment.
Comparative genomics of phages and prophages in lactic acid bacteria
Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 2002
Comparative phage genomics has become possible due to the availability of more than 100 complete phage genome sequences and the development of powerful bioinformatics tools. This technology, profiting from classical molecular-biology knowledge, has opened avenues of research for topics, which were difficult to address in the past. Now, it is possible to retrace part of the evolutionary history of phage modules by comparative genomics. The diagnosis of relatedness is hereby not uniquely based on sequence similarity alone, but includes topological considerations of genome organization. Detailed transcription maps have allowed in silico predictions of genome organization to be verified and refined. This comparative knowledge is providing the basis for a new taxonomic classification concept for bacteriophages infecting low G+C-content Gram-positive bacteria based on the genetic organization of the structural gene module. An Sfi21-like and an Sfi11-like genus of Siphoviridae is proposed. The gene maps of many phages show remarkable synteny in their structural genes defining a lambda super-group within Siphoviridae. A hierarchy of relatedness within the lambda super-group suggests elements of vertical evolution in Siphoviridae. Tailed phages are the result of both vertical and horizontal evolution and are thus fascinating objects for the study of molecular evolution. Prophage sequences integrated into the genomes of their bacterial host present theoretical challenges for evolutionary biologists. Prophages represent up to 10% of the genome in some LAB. In pathogenic streptococci prophages confer genes of selective value for the lysogenic cell. The lysogenic conversion genes are located between the lysin gene and the right phage attachment site. Non-attributed genes were found at the same genome position of prophages from lactic streptococci. These genes belong to the few prophage genes transcribed in the lysogen. Prophages from dairy bacteria might therefore also contribute to the evolutionary fitness of non-pathogenic LAB.
Comparative Genomics of the Late Gene Cluster from Lactobacillus Phages
Virology, 2000
Three prophage sequences were identified in the Lactobacillus johnsoni strain NCC533. Prophage Lj965 predicted a gene map very similar to those of pac-site Streptococcus thermophilus phages over its DNA packaging and head and tail morphogenesis modules. Sequence similarity linked the putative DNA packaging and head morphogenesis genes at the protein level. Prophage Lj965/S. thermophilus phage Sfi11/Lactococcus lactis phage TP901-1 on one hand and Lactobacillus delbrueckii phage LL-H/Lactobacillus plantarum phage phig1e/Listeria monocytogenes phage A118 on the other hand defined two sublines of structural gene clusters in pac-site Siphoviridae from low-GC Gram-positive bacteria. Bacillus subtilis phage SPP1 linked both sublines. The putative major head and tail proteins from Lj965 shared weak sequence similarity with phages from Gram-negative bacteria. A clearly independent line of structural genes in Siphoviridae from low-GC Grampositive bacteria is defined by temperate cos-site phages including Lactobacillus gasseri phage adh, which also shared sequence similarity with phage D3 infecting a Gram-negative bacterium. A phylogenetic tree analysis demonstrated that the ClpP-like protein identified in four cos-site Siphoviridae from Lactobacillus, Lactococcus, Streptococcus, and Pseudomonas showed graded sequence relationships. The tree suggested that the ClpP-like proteins from the phages were not acquired by horizontal gene transfer from their corresponding bacterial hosts.
Applied Microbiology and Biotechnology, 2016
Lactic acid bacteria (LAB) have many applications in food and industrial fermentations. Prophage induction and generation of new virulent phages is a risk for the dairy industry. We identified three complete prophages (PLE1, PLE2, and PLE3) in the genome of the well-studied probiotic strain Lactobacillus casei BL23. All of them have mosaic architectures with homologous sequences to Streptococcus, Lactococcus, Lactobacillus, and Listeria phages or strains. Using a combination of quantitative real-time PCR, genomics, and proteomics, we showed that PLE2 and PLE3 can be induced-but with different kineticsin the presence of mitomycin C, although PLE1 remains as a prophage. A structural analysis of the distal tail (Dit) and tail associated lysin (Tal) baseplate proteins of these prophages and other L. casei/paracasei phages and prophages provides evidence that carbohydrate-binding modules (CBM) located within these Bevolved^proteins may replace receptor binding proteins (RBPs) present in other well-studied LAB phages. The detailed study of prophage induction in this prototype strain in combination with characterization of the proteins involved in host recognition will facilitate the design of new strategies for avoiding phage propagation in the dairy industry.
Assessing the functionality and genetic diversity of lactococcal prophages
International Journal of Food Microbiology, 2018
Lactococcal prophages appear to reside relatively stably in the host genome One in six strains contains an inducible prophage Identification of a fifth sub-group/morphotype of the so-called P335 lactococcal phage group Observation of distinct morphologies of induced phage particles ACCEPTED MANUSCRIPT 7 (Altschul et al., 1990) analysis against the non-redundant protein databases curated by the National Centre for Biotechnology Information (NCBI) (http://www.ncbi.nlm.nig.gov/). Manual curation of predicted ORFs was conducted using Artemis v16 genome browser and annotation tool (http://www.sanger.ac.uk/science/tools/artemis). The software tool was used to combine and inspect ORF results, adjust, where necessary start codons of predicted genes and to aid in the identification of pseudogenes. Further refinement of annotations was performed where required using alternative databases; Pfam (Bateman et al., 2004) and Uniprot/EMBL (http://www.uniprot.org/). Ribosomal RNA (rRNA) and transfer RNA (tRNA) genes were predicted using RNAmmer v1.2 (http://www.cbs.dtu.dk/services/RNAmmer/) and tRNA-scan-SE v1.4 (http://lowelab.ucsc.edu/tRNAscan-SE/), respectively. Predicted rRNA and rRNA genes were manually added using Artemis. 2.4 Identification of phage-encoded phage-resistance systems Potential abortive infection systems (Abi) were detected by first constructing a database of the amino acid sequences of all currently known Abi's (Table S2) and performing an allagainst-all reciprocal blast (2) of the phage-encoding regions against the database using an alignment cutoff value; E-value 0.0001, >50 % amino acid identity across 50 % of the sequence length. Sie (Superinfection exclusion) proteins were manually annotated using the criteria of small proteins (<25 kDa) encoded by genes situated between the integrase and repressor genes on the lysogeny module of the phages and possessing one or more N-terminal transmembrane domain(s) detected with TMHMM Server, v. 2.0 (Mahony et al., 2008; McGrath et al., 2002). Phage methylases were detected as described above for general feature predictions.
Journal of Bacteriology, 2005
Virulent lactococcal prolate (or c2-like) phages are the second most common phage group that causes fermentation failure in the dairy industry. We have mapped two host range determinants in two lactococcal prolate phages, c2 and 923, for the host strains MG1363 and 112. Each phage replicates on only one of the two host strains: c2 on MG1363 and 923 on 112. Phage-phage recombinants that replicated on both strains were isolated by a new method that does not require direct selection but rather employs an enrichment protocol. After initial mixed infection of strain 112, two rotations, the first of which was carried out on strain MG1363 and the second on 112, permitted continuous amplification of double-plating recombinants while rendering one of the parent phages unamplified in each of the two rotations. Mapping of the recombination endpoints showed that the presence of the N-terminal two-thirds of the tail protein L10 of phage c2 and a 1,562-bp cosR-terminal fragment of phage 923 genome overcame blocks of infection in strains MG1363 and 112, respectively. Both infection inhibition mechanisms act at the stage of DNA entry; in strain MG1363, the infection block acts early, before phage DNA enters the cytoplasm, and in strain 112, it acts late, after most of the DNA has entered the cell but before it undergoes cos-end ligation. These are the first reported host range determinants in bacteriophage of lactic acid bacteria required for overcoming inhibition of infection at the stage of DNA entry and cos-end ligation.
Genome Sequences of Eight Prophages Isolated from Lactococcus lactis Dairy Strains
Genome announcements, 2016
P335 group phages represent the most divergent phage group infecting dairy Lactococcus lactis strains and have significant implications for the dairy processing industry. Here, we report the complete genome sequences of eight lactococcal prophages chemically induced from industrial lactococcal strains that propagate lytically on one of two laboratory strains.