Unsupervised Domain Adaptation using Generative Models and Self-ensembling (original) (raw)
2018, Cornell University - arXiv
Transferring knowledge across different datasets is an important approach to successfully train deep models with a small-scale target dataset or when few labeled instances are available. In this paper, we aim at developing a model that can generalize across multiple domain shifts, so that this model can adapt from a single source to multiple targets. This can be achieved by randomizing the generation of the data of various styles to mitigate the domain mismatch. First, we present a new adaptation to the CycleGAN model to produce stochastic style transfer between two image batches of different domains. Second, we enhance the classifier performance by using a self-ensembling technique with a teacher and student model to train on both original and generated data. Finally, we present experimental results on three datasets Office-31, Office-Home, and Visual Domain adaptation. The results suggest that selfensembling is better than simple data augmentation with the newly generated data and a single model trained this way can have the best performance across all different transfer tasks. 1. Showing that GAN networks can help make a model
Sign up for access to the world's latest research.
checkGet notified about relevant papers
checkSave papers to use in your research
checkJoin the discussion with peers
checkTrack your impact
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.