HERCing: Structural and Functional Relevance of the Large HERC Ubiquitin Ligases (original) (raw)
Related papers
Genomics, 2005
The HERC family of ubiquitin ligases is characterized by the presence of a HECT domain and one or more RCC1-like domains. We report the identification of two novel members, HERC4 and HERC6, and subdivide the family into one group of two large and one group of four small members according to protein size and domain structure. The small members share a similar genomic organization, three of them mapping to chromosomal region 4q22, indicating strong evolutionary cohesions. Phylogenetic analysis reveals that the HERC ancestor emerged in nematodes and that the family expanded throughout evolution. The mRNA expression pattern of the small human members was found to be diverse in selected tissues and cells; overexpressed proteins display a similar cytosolic distribution. These data indicate that the HERC family members exhibit similarities in many aspects, but also sufficient differences indicating functional diversity.
Animal HECT ubiquitin ligases: evolution and functional implications
BMC Evolutionary Biology, 2010
Background: HECT ubiquitin ligases (HECT E3s) are key components of the eukaryotic ubiquitin-proteasome system and are involved in the genesis of several human diseases. In this study, I analyze the patterns of diversification of HECT E3s since animals emerged in order to provide the right framework to understand the functional data available for proteins of this family. Results: I show that the current classification of HECT E3s into three groups (NEDD4-like E3s, HERCs and single-HECT E3s) is fundamentally incorrect. First, the existence of a "Single-HECT E3s" group is not supported by phylogenetic analyses. Second, the HERC proteins must be divided into two subfamilies (Large HERCs, Small HERCs) that are evolutionarily very distant, their structural similarity being due to convergence and not to a common origin. Sequence and structural analyses show that animal HECT E3s can be naturally classified into 16 subfamilies. Almost all of them appeared either before animals originated or in early animal evolution. More recently, multiple gene losses have occurred independently in some lineages (nematodes, insects, urochordates), the same groups that have also lost genes of another type of E3s (RBR family). Interestingly, the emergence of some animal HECT E3s precedes the origin of key cellular systems that they regulate (TGF-β and EGF signal transduction pathways; p53 family of transcription factors) and it can be deduced that distantly related HECT proteins have been independently co-opted to perform similar roles. This may contribute to explain why distantly related HECT E3s are involved in the genesis of multiple types of cancer. Conclusions: The complex evolutionary history of HECT ubiquitin ligases in animals has been deciphered. The most appropriate model animals to study them and new theoretical and experimental lines of research are suggested by these results.
Genome Biology and Evolution, 2013
The post-translational modification of proteins by the ubiquitination pathway is an important regulatory mechanism in eukaryotes. To date, however, studies on the evolutionary history of the proteins involved in this pathway have been restricted to E1 and E2 enzymes, while E3 studies have been focused mainly in metazoans and plants. To have a wider perspective, here we perform a genomic survey of the HECT family of E3 ubiquitin-protein ligases, an important part of this post-translational pathway, in genomes from representatives of all major eukaryotic lineages. We classify eukaryotic HECTs and reconstruct, by phylogenetic analysis, the putative repertoire of these proteins in the last eukaryotic common ancestor (LECA).
HERC3 binding to and regulation by ubiquitin
FEBS Letters, 2001
Members of the HERC (domain homologous to E6 associated protein carboxy-terminus and RCC1 domain protein) family may function both as guanine nucleotide exchange factors and E3 ubiquitin ligases. Here we identify an unstudied member, HERC3. This protein was recognized by specific antibodies in different cell types. HERC3 was located in the cytosol and in vesicular-like structures containing L L-COP, ARF and Rab5 proteins. Involvement of HERC3 in the ubiquitin system was suggested by its ability to interact with ubiquitin. The conserved cysteine in HECT proteins was not essential for this non-covalent binding. Moreover, HERC3 was a substrate of ubiquitination being degraded by the proteasome. These observations indicate a fine regulation of HERC3 and suggest a role in vesicular traffic and ubiquitin-dependent processes.
Nature Cell Biology, 2008
N-Myc, a member of the Myc family of transcription factors that includes c-Myc and L-Myc, is normally expressed in the developing nervous system and other selected tissues 1,2 . Under normal conditions, N-Myc expression predominates in neural stem cells and neuroectodermal progenitors where c-Myc is undetectable 1 . Recent results from mice carrying targeted deletion of the N-myc gene in these cellular compartments established that N-myc expression in the developing nervous system is essential for the correct timing of cell-cycle exit and differentiation. In the absence of N-myc, precocious differentiation and premature withdrawal from the cell cycle of neural stem cells and cortical progenitors is associated with upregulation of Cdk inhibitors and reduced expression of the Myc target gene cyclin D2 (ref. 3).
The HERC2 ubiquitin ligase is essential for embryonic development and regulates motor coordination
Oncotarget, 2016
A mutation in the HERC2 gene has been linked to a severe neurodevelopmental disorder with similarities to the Angelman syndrome. This gene codifies a protein with ubiquitin ligase activity that regulates the activity of tumor protein p53 and is involved in important cellular processes such as DNA repair, cell cycle, cancer, and iron metabolism. Despite the critical role of HERC2 in these physiological and pathological processes, little is known about its relevance in vivo. Here, we described a mouse with targeted inactivation of the Herc2 gene. Homozygous mice were not viable. Distinct from other ubiquitin ligases that interact with p53, such as MDM2 or MDM4, p53 depletion did not rescue the lethality of homozygous mice. The HERC2 protein levels were reduced by approximately one-half in heterozygous mice. Consequently, HERC2 activities, including ubiquitin ligase and stimulation of p53 activity, were lower in heterozygous mice. A decrease in HERC2 activities was also observed in human skin fibroblasts from individuals with an Angelman-like syndrome that express an unstable mutant protein of HERC2. Behavioural analysis of heterozygous mice identified an impaired motor synchronization with normal neuromuscular function. This effect was not observed in p53 knockout mice, indicating that a mechanism independent of p53 activity is involved. Morphological analysis showed the presence of HERC2 in Purkinje cells and a specific loss of these neurons in the cerebella of heterozygous mice. In these animals, an increase of autophagosomes and lysosomes was observed. Our findings establish a crucial role of HERC2 in embryonic development and motor coordination.
Physical and Genetic Associations of the Irc20 Ubiquitin Ligase with Cdc48 and SUMO
PLoS ONE, 2013
A considerable percentage of the genome is dedicated to the ubiquitin-proteasome system, with the yeast genome predicted to encode approximately 100 ubiquitin ligases (or E3s), and the human genome predicted to encode more than 600 E3s. The most abundant class of E3s consists of RING finger-containing proteins. Although many insights have been obtained regarding the structure and catalytic mechanism of the E3s, much remains to be learned about the function of the individual E3s. Here we characterize IRC20, which encodes a dual RING-and Snf/Swi family ATPase domain-containing protein in yeast that has been implicated in DNA repair. We found that overexpression of IRC20 causes two transcriptionassociated phenotypes and demonstrate that the Irc20 RING domain possesses ubiquitin E3 activity in vitro. Two mass spectrometry approaches were undertaken to identify Irc20-associated proteins. Wild-type Irc20 associated with Cdc48, a AAA-ATPase that serves as an intermediary in the ubiquitin-proteasome system. A second approach using a RING mutant derivative of Irc20 detected increased association of the Irc20 mutant with SUMO. These findings provide a foundation for understanding the roles of Irc20 in transcription and DNA repair.
Structure of the HECT C-lobe of the UBR5 E3 ubiquitin ligase
Acta Crystallographica Section F Structural Biology and Crystallization Communications, 2012
C-terminal lobe of human UBR5 HECT domain, 3pt3 UBR5 ubiquitin ligase (also known as EDD, Rat100 or hHYD) is a member of the E3 protein family of HECT (homologous to E6-AP C-terminus) ligases as it contains a C-terminal HECT domain. In ubiquitination cascades involving E3s of the HECT class, ubiquitin is transferred from an associated E2 ubiquitinconjugating enzyme to the acceptor cysteine of the HECT domain, which consists of structurally distinct N-and C-lobes connected by a flexible linker. Here, the high-resolution crystal structure of the C-lobe of the HECT domain of human UBR5 is presented. The structure reveals important features that are unique compared with other HECT domains. In particular, a distinct fourresidue insert in the second helix elongates this helix, resulting in a strikingly different orientation of the preceding loop. This protruding loop is likely to contribute to specificity towards the E2 ubiquitin-conjugating enzyme UBCH4, which is an important functional partner of UBR5. Ubiquitination assays showed that the C-lobe of UBR5 is able to form a thioester-linked E3-ubiquitin complex, although it does not physically interact with UBCH4 in NMR experiments. This study contributes to a better understanding of UBR5 ubiquitination activity.