Native glycosylation and binding of the antidepressant paroxetine in a low-resolution crystal structure of human myeloperoxidase (original) (raw)
Related papers
Journal of Molecular Biology, 2001
The peroxiredoxins define an emerging family of peroxidases able to reduce hydrogen peroxide and alkyl hydroperoxides with the use of reducing equivalents derived from thiol-containing donor molecules such as thioredoxin, glutathione, trypanothione and AhpF. Peroxiredoxins have been identified in prokaryotes as well as in eukaryotes. Peroxiredoxin 5 (PRDX5) is a novel type of mammalian thioredoxin peroxidase widely expressed in tissues and located cellularly to mitochondria, peroxisomes and cytosol. Functionally, PRDX5 has been implicated in antioxidant protective mechanisms as well as in signal transduction in cells. We report here the 1.5 Ǻ resolution crystal structure of human PRDX5 in its reduced form. The crystal structure reveals that PRDX5 presents a thioredoxin-like domain. Interestingly, the crystal structure shows also that PRDX5 does not form a dimer like other mammalian members of the peroxiredoxin family. In the reduced form of PRDX5, Cys47 and Cys151 are distant of 13.8 Ǻ although these two cysteine residues are thought to be involved in peroxide reductase activity by forming an intramolecular disulfide intermediate in the oxidized enzyme. These data suggest that the enzyme would necessitate a conformational change to form a disulfide bond between catalytic Cys47 and Cys151 upon oxidation according to proposed peroxide reduction mechanisms. Moreover, the presence of a benzoate ion, a hydroxyl radical scavenger, was noted close to the active-site pocket. The possible role of benzoate in the antioxidant activity of PRDX5 is discussed.
Active site structure and catalytic mechanisms of human peroxidases
Archives of Biochemistry and Biophysics, 2006
Myeloperoxidase (MPO), eosinophil peroxidase, lactoperoxidase, and thyroid peroxidase are heme-containing oxidoreductases (EC 1.7.1.11), which bind ligands and/or undergo a series of redox reactions. Though sharing functional and structural homology, reflecting their phylogenetic origin, differences are observed regarding their spectral features, substrate specificities, redox properties, and kinetics of interconversion of the relevant redox intermediates ferric and ferrous peroxidase, compound I, compound II, and compound III. Depending on substrate availability, these heme enzymes path through the halogenation cycle and/or the peroxidase cycle and/or act as poor (pseudo-)catalases. Based on the published crystal structures of free MPO and its complexes with cyanide, bromide and thiocyanate as well as on sequence analysis and modeling, we critically discuss structure-function relationships. This analysis highlights similarities and distinguishing features within the mammalian peroxidases and intents to provide the molecular and enzymatic basis to understand the prominent role of these heme enzymes in host defense against infection, hormone biosynthesis, and pathogenesis.
The role of myeloperoxidase (MPO) in biomolecule modification, chronic inflammation and disease
Antioxidants & Redox Signaling
Significance: The release of myeloperoxidase (MPO) by activated leukocytes is critical in innate immune responses. MPO produces hypochlorous acid (HOCl) and other strong oxidants, which kill bacteria and other invading pathogens. However, MPO also drives the development of numerous chronic inflammatory pathologies, including atherosclerosis, neurodegenerative disease, lung disease, arthritis, cancer, and kidney disease, which are globally responsible for significant patient mortality and morbidity. Recent Advances: The development of imaging approaches to precisely identify the localization of MPO and the molecular targets of HOCl in vivo is an important advance, as typically the involvement of MPO in inflammatory disease has been inferred by its presence, together with the detection of biomarkers of HOCl, in biological fluids or diseased tissues. This will provide valuable information in regard to the cell types responsible for releasing MPO in vivo, together with new insight into potential therapeutic opportunities. Critical Issues: Although there is little doubt as to the value of MPO inhibition as a protective strategy to mitigate tissue damage during chronic inflammation in experimental models, the impact of long-term inhibition of MPO as a therapeutic strategy for human disease remains uncertain, in light of the potential effects on innate immunity. Future Directions: The development of more targeted MPO inhibitors or a treatment regimen designed to reduce MPO-associated host tissue damage without compromising pathogen killing by the innate immune system is therefore an important future direction. Similarly, a partial MPO inhibition strategy may be sufficient to maintain adequate bacterial activity while decreasing the propagation of inflammatory pathologies. Antioxid. Redox Signal. 32, 957-981.
Myeloperoxidase: a target for new drug development?
British Journal of Pharmacology, 2007
Myeloperoxidase (MPO), a member of the haem peroxidase-cyclooxygenase superfamily, is abundantly expressed in neutrophils and to a lesser extent in monocytes and certain type of macrophages. MPO participates in innate immune defence mechanism through formation of microbicidal reactive oxidants and diffusible radical species. A unique activity of MPO is its ability to use chloride as a cosubstrate with hydrogen peroxide to generate chlorinating oxidants such as hypochlorous acid, a potent antimicrobial agent. However, evidence has emerged that MPO-derived oxidants contribute to tissue damage and the initiation and propagation of acute and chronic vascular inflammatory disease. The fact that circulating levels of MPO have been shown to predict risks for major adverse cardiac events and that levels of MPO-derived chlorinated compounds are specific biomarkers for disease progression, has attracted considerable interest in the development of therapeutically useful MPO inhibitors. Today, detailed information on the structure of ferric MPO and its complexes with low-and high-spin ligands is available. This, together with a thorough understanding of reaction mechanisms including redox properties of intermediates, enables a rationale attempt in developing specific MPO inhibitors that still maintain MPO activity during host defence and bacterial killing but interfere with pathophysiologically persistent activation of MPO. The various approaches to inhibit enzyme activity of MPO and to ameliorate adverse effects of MPO-derived oxidants will be discussed. Emphasis will be put on mechanism-based inhibitors and high-throughput screening of compounds as well as the discussion of physiologically useful HOCl scavengers.
Discovery of Fragment Molecules That Bind the Human Peroxiredoxin 5 Active Site
PLoS ONE, 2010
The search for protein ligands is a crucial step in the inhibitor design process. Fragment screening represents an interesting method to rapidly find lead molecules, as it enables the exploration of a larger portion of the chemical space with a smaller number of compounds as compared to screening based on drug-sized molecules. Moreover, fragment screening usually leads to hit molecules that form few but optimal interactions with the target, thus displaying high ligand efficiencies. Here we report the screening of a homemade library composed of 200 highly diverse fragments against the human Peroxiredoxin 5 protein. Peroxiredoxins compose a family of peroxidases that share the ability to reduce peroxides through a conserved cysteine. The three-dimensional structures of these enzymes ubiquitously found throughout evolution have been extensively studied, however, their biological functions are still not well understood and to date few inhibitors have been discovered against these enzymes. Six fragments from the library were shown to bind to the Peroxiredoxin 5 active site and ligand-induced chemical shift changes were used to drive the docking of these small molecules into the protein structure. The orientation of the fragments in the binding pocket was confirmed by the study of fragment homologues, highlighting the role of hydroxyl functions that hang the ligands to the Peroxiredoxin 5 protein. Among the hit fragments, the small catechol molecule was shown to significantly inhibit Peroxiredoxin 5 activity in a thioredoxin peroxidase assay. This study reports novel data about the ligand-Peroxiredoxin interactions that will help considerably the development of potential Peroxiredoxin inhibitors.
Journal of Pharmacy and Pharmacology, 2014
Objectives Major depressive disorder (MDD) is accompanied with an imbalance in the immune system and cardiovascular impairments, such as atherosclerosis. Several mechanisms have been pointed out to underlie this rather unexpected association, and among them the activity of myeloperoxidase (MPO). The aim of our study was to find compounds that inhibit both MPO and serotonin transporter (SERT) for treating MDD associated with cardiovascular diseases. Methods SERT inhibition was assessed with measuring of [3H]-serotonin uptake using HEK-293 MSR cells. MPO inhibition was determined by taurine chloramine test on 3-(aminoalkyl)-5-fluoroindole derivatives and on clinically relevant antidepressants. All kinetic measurements were performed using a temperature-controlled stopped-flow apparatus (model SX-18 MV). Promising lead compounds were docked onto SERT 3D structure modelled using the LeuT structure complexed to tryptophan (PDB code 3F3A). Their toxicological profile was also assessed. Ke...
The Journal of …, 2009
The crystal structure of the complex of lactoperoxidase (LPO) with its physiological substrate thiocyanate (SCN–) has been determined at 2.4Å resolution. It revealed that the SCN– ion is bound to LPO in the distal heme cavity. The observed orientation of the SCN– ion shows that the sulfur atom is closer to the heme iron than the nitrogen atom. The nitrogen atom of SCN– forms a hydrogen bond with a water (Wat) molecule at position 6′. This water molecule is stabilized by two hydrogen bonds with Gln423 Nε2 and Phe422 oxygen. In contrast, the placement of the SCN– ion in the structure of myeloperoxidase (MPO) occurs with an opposite orientation, in which the nitrogen atom is closer to the heme iron than the sulfur atom. The site corresponding to the positions of Gln423, Phe422 oxygen, and Wat6′ in LPO is occupied primarily by the side chain of Phe407 in MPO due to an entirely different conformation of the loop corresponding to the segment Arg418–Phe431 of LPO. This arrangement in MPO does not favor a similar orientation of the SCN– ion. The orientation of the catalytic product OSCN– as reported in the structure of LPO·OSCN– is similar to the orientation of SCN– in the structure of LPO·SCN–. Similarly, in the structure of LPO·SCN–·CN–, in which CN– binds at Wat1, the position and orientation of the SCN– ion are also identical to that observed in the structure of LPO·SCN.
Crystal Structure of a Dimeric Oxidized form of Human Peroxiredoxin 5
Journal of Molecular Biology, 2004
Peroxiredoxin 5 is the last discovered mammalian member of an ubiquitous family of peroxidases widely distributed among prokaryotes and eukaryotes. Mammalian peroxiredoxin 5 has been recently classified as an atypical 2-Cys peroxiredoxin due to the presence of a conserved peroxidatic N-terminal cysteine (Cys47) and an unconserved resolving C-terminal cysteine residue (Cys151) forming an intramolecular disulfide intermediate in the oxidized enzyme. We have recently reported the crystal structure of human peroxiredoxin 5 in its reduced form. Here, a new crystal form of human peroxiredoxin 5 is described at 2.0 Ǻ resolution. The asymmetric unit contains three polypeptide chains. Surprisingly, beside two reduced chains, the third one is oxidized although the enzyme was crystallized under initial reducing conditions in the presence of 1 mM 1,4-dithio-DL-threitol. The oxidized polypeptide chain forms an homo-dimer with a symmetry-related one through intermolecular disulfide bonds between Cys47 and Cys151. The formation of these disulfide bonds is accompanied by the partial unwinding of the N-terminal parts of the α2 helix, which, in the reduced form, contains the peroxidatic Cys47 and the α6 helix, which is sequentially close to the resolving residue Cys151. In each monomer of the oxidized chain, the C-terminal part including the α6 helix is completely reorganized and is isolated from the rest of the protein on an extended arm. In the oxidized dimer, the arm belonging to the first monomer now appears at the surface of the second subunit and vice versa.