Degradation behaviour and mechanical properties of magnesium implants in rabbit tibiae (original) (raw)

Magnesium alloys for temporary implants in osteosynthesis: In vivo studies of their degradation and interaction with bone

Acta Biomaterialia, 2012

This study investigates the bone and tissue response to degrading magnesium pin implants in the growing rat skeleton by continuous in vivo microfocus computed tomography (lCT) monitoring over the entire pin degradation period, with special focus on bone remodeling after implant dissolution. The influence of gas release on tissue performance upon degradation of the magnesium implant is also addressed. Two different magnesium alloys -one fast degrading (ZX50) and one slowly degrading (WZ21) -were used for evaluating the bone response in 32 male Sprague-Dawley rats. After femoral pin implantation lCTs were performed every 4 weeks over the 24 weeks of the study period. ZX50 pins exhibited early degradation and released large hydrogen gas volumes. While considerable callus formation occurred, the bone function was not permanently harmed and the bone recovered unexpectedly quickly after complete pin degradation. WZ21 pins kept their integrity for more than 4 weeks and showed good osteoconductive properties by enhancing bone accumulation at the pin surface. Despite excessive gas formation, the magnesium pins did not harm bone regeneration. At smaller degradation rates, gas evolution remained unproblematic and the magnesium implants showed good biocompatibility. Online lCT monitoring is shown to be suitable for evaluating materials degradation and bone response in vivo, providing continuous information on the implant and tissue performance in the same living animal.

Evaluation of the biocompatibility of two magnesium alloys as degradable implant materials in comparison to titanium as non‐resorbable material in the rabbit

Materials Science and Engineering: C, 2013

The aim of this study is to compare the biocompatibility of the two magnesium based alloys LAE442 and LANd442 with that of titanium. For this purpose, cylindrical implants were introduced into the medullary cavity of rabbit's tibiae for 4 and 8 weeks. Animals without any implant served as a control. In the follow-up, clinical, X-ray and μCT-investigations were performed to evaluate the reactions of the bone towards the implanted materials. After euthanasia, ex vivo μCTand histological investigations were performed to verify the results of the in vivo tests. It could be shown that all materials induce changes in the bone. Whereas LANd442 caused the most pronounced reactions, such as increasing bone volume and bone porosity and decreasing bone density, titanium showed the most bone-implant contact by forming trabeculae. The tibiae of rabbits without implants also reacted by forming cavities, it is therefore assumed that the surgery method itself influences the bone.

Bone formation within the vicinity of biodegradable magnesium alloy implant in a rat femur model

Metals and Materials International, 2012

The purposes of this preliminary study were to investigate the effect of increased Ca contents (5-10 wt% Ca) in Mg-Ca alloy on the mechanical properties and osseous healing rate in a standard rat defect model. Mechanical tests were performed using a compression system followed by qualitative histological analysis using the hemotoxylin and eosin (H&E) staining method and quantitative reverse transcriptase polymerase chain reaction (reverse transcriptase PCR). Mg-Ca alloy degraded fast in vivo while displaying a high level of the bone formation markersOC and ALP. Favorablemechanical strength properties were displayed as Ca content increased from 5 wt% to 10 wt% to show its potential to be considered as a load bearing implant material. The resultfrom this study suggests that the developed Mg-Ca alloy has the potential to serve as a biocompatible load bearing implant material that is degradable and possibly osteoconductive.

Advances in the Study of Magnesium Alloys and Their Use in Bone Implant Material

Metals

Magnesium and magnesium alloys have great application potential in the field of orthopaedics. Compared with traditional inorganic nonmetallic materials and medical polymer materials, magnesium alloys have many advantages, such as better strength, toughness, fatigue resistance, and easy processing. Its mechanical properties are suitable and controllable. It can meet the same elastic modulus, cell compatibility, and biodegradability as human cortical bone. There are also some drawbacks for biodegradability, as magnesium and its alloys, with their high degradation rate, can cause insufficient integrity of the mechanical properties. This paper summarises the research on magnesium and its magnesium alloy materials in the field of bone implantation, looking at what magnesium and its magnesium alloys are, the history of magnesium alloys in bone implant materials, the manufacturing of magnesium alloys, the mechanical properties of magnesium alloys, the bio-compatibility and clinical applica...

Emerging magnesium-based biomaterials for orthopedic implantation

Emerging Materials Research, 2019

Orthopedic implants, such as those made of stainless steel, cobalt (Co)-based alloys and titanium (Ti) alloys, are commonly used to stabilize, protect, improve, replace or regenerate damaged musculoskeletal tissues both anatomically and functionally in millions of bone injury patients. The biggest drawback of these metallic biomaterials is their non-degradability in the body environment. Magnesium (Mg) and magnesium-based alloys are a new generation of degradable implant materials that have attracted great attention in the past 10 years. There are several advantages of magnesium-based alloys for orthopedic application over other metallic biomaterials. First, magnesium is an essential element for many biological activities, including enzymatic reactions, the formation of apatite and bone cell adsorption. Second, their mechanical properties, including density, elastic modulus and compressive yield strength, are much closer to those of natural bone, and, therefore, they can avoid the stress-shielding effect. Third, magnesium alloys can eliminate the necessity of a second surgery to remove permanent bone implants. Recent results show that alloying of magnesium with aluminum (Al), zinc (Zn), calcium (Ca), zirconium (Zr), yttrium (Y) and rare-earth elements can significantly improve its corrosion resistance and mechanical strength. This paper reviews and compares the mechanical properties, corrosion resistance and biocompatibility of currently researched magnesium-based alloys for use in medical implant applications.

Biocompatibility Evaluation of PEO-treated Magnesium Alloy Implants Placed in Rabbit Femur Condyle Notches and Paravertebral Muscles

2022

Background: Magnesium alloys have been receiving much attention for use in biodegradable metal implants because of their excellent mechanical properties and biocompatibility. However, their rapid breakdown and low bioactivity can cause the implant to lose mechanical integrity before the bone is completely healed. Moreover, hydrogen gas released during degradation can significantly delay the tissue regeneration process. To solve the instability of magnesium alloys, Zn and Ca can be added to improve the mechanical properties and biocompatibility. One other way to improve the mechanical properties of Mg is plasma electrolytic oxidation (PEO), which provides a dense, thick ceramic-like coating on the Mg surface. In this study, high-purity Mg was selected as the control, and Mg-1wt%Zn-0.1wt%Ca alloy and PEO-treated Mg-1wt%Zn-0.1wt%Ca alloy were selected as the test materials; the results of radiographic and histological analyses of their biocompatibility are reported herein. Materials an...

Osteosynthesis devices in absorbable Magnesium alloy in comparison to standard ones: a Systematic Review on effectiveness and safety

2021

Background and aim of the work: Magnesium (Mg) is a metal physiologically present in bone tissue and essential for bone health. Mg-based alloys exhibit mechanical properties, namely density and strength, similar to human cortical bone. These features have been exploited for the development of osteosynthesis devices in biodegradable Mg-based alloys. Accordingly, the aim of this study is to rank the effectiveness and safety of Mg-based alloys applied in bone surgery in comparison to other suitable metals, focusing in particular on Mg superior biocompatibility and biodegradability. Methods: a systematic review of the literature was conducted including only primary research studies dealing with patients suffering from fractured or osteotomized bones fixed using Mg-based osteosynthesis devices. Results: literature revision suggested Mg-alloys holding comparable properties and side effects in comparison with titanium (Ti) screws, thus showing similar efficacy and safety. Particularly, the...