Heterocyclic Dications as a New Class of Telomeric G-Quadruplex Targeting Agents (original) (raw)

Insights into the Small Molecule Targeting of Biologically Relevant G-Quadruplexes: An Overview of NMR and Crystal Structures

Pharmaceutics

G-quadruplexes turned out to be important targets for the development of novel targeted anticancer/antiviral therapies. More than 3000 G-quadruplex small-molecule ligands have been described, with most of them exerting anticancer/antiviral activity by inducing telomeric damage and/or altering oncogene or viral gene expression in cancer cells and viruses, respectively. For some ligands, in-depth NMR and/or crystallographic studies were performed, providing detailed knowledge on their interactions with diverse G-quadruplex targets. Here, the PDB-deposited NMR and crystal structures of the complexes between telomeric, oncogenic or viral G-quadruplexes and small-molecule ligands, of both organic and metal-organic nature, have been summarized and described based on the G-quadruplex target, from telomeric DNA and RNA G-quadruplexes to DNA oncogenic G-quadruplexes, and finally to RNA viral G-quadruplexes. An overview of the structural details of these complexes is here provided to guide th...

Topology Conservation and Loop Flexibility in Quadruplex–Drug Recognition: Crystal Structures of Inter- and Intramolecular Telomeric DNA Quadruplex–Drug Complexes

Journal of Molecular Biology, 2008

Knowledge of the biologically relevant topology is critical for the design of drugs targeting quadruplex nucleic acids. We report here crystal structures of a G-quadruplex-selective ligand complexed with two human telomeric DNA quadruplexes. The intramolecular quadruplex sequence d[TAGGG (TTAGGG) 3 ] and the bimolecular quadruplex sequence d(TAGGGT-TAGGGT) were co-crystallized with a tetra-substituted naphthalene diimide quadruplex-binding ligand. The structures were solved and refined to 2.10and 2.20-Å resolution, respectively, revealing that the quadruplex topology in both structures is unchanged by the addition of the ligands, retaining a parallel-stranded arrangement with external double-chain-reversal propeller loops. The parallel topology results in accessible external 5′ and 3′ planar G-tetrad surfaces for ligand stacking. This also enables significant ligandinduced conformational changes in several TTA propeller loops to take place such that the loops themselves are able to accommodate bound drug molecules without affecting the parallel quadruplex topology, by stacking on the external TTA connecting loop nucleotides. Ligands are bound into the external TTA loop nucleotides and stack onto G-tetrad surfaces. These crystal structures provide a framework for further ligand development of the naphthalene diimide series to enhance selectivity and affinity.

Identification of novel telomeric G-quadruplex-targeting chemical scaffolds through screening of three NCI libraries

Bioorganic & Medicinal Chemistry Letters, 2012

Keywords: G-quadruplex Duplex DNA Ligands NCI Diversity Set High throughput screen FRET-based assay Drug-likeness a b s t r a c t Thirteen compounds with diverse chemical structures have been identified as selective telomeric G-quadruplex-binding ligands through screening the NCI Diversity Set II, the NCI Natural Products Set II and the NCI Mechanistic Diversity Set libraries containing a total of 2307 members against a human telomeric G-quadruplex using a FRET-based DNA melting assay. These compounds show significant selectivity towards a telomeric G-quadruplex compared to duplex DNA, fall within a molecular weight range of 327-533, and are generally consistent with the Lipinski Rule of Five for drug-likeness. Thus they provide new chemical scaffolds for the development of novel classes of G-quadruplex-targeting agents.

Small-molecule quadruplex-targeted drug discovery

Repeated guanine tracts in human and other genomes can form higher-order four stranded structures, termed quadruplexes. In the human genome they have particular prevalence in telomeric and promoter regions and also in 5 0-UTRs and introns. These structures, if unresolved and stabilised by small molecules, can form impediments to transcription and translation, and thus can be considered as a form of gene targeting. This Digest surveys the major types of quadruplex-binding small molecules that have been designed and studied to date and directs attention to directions where future development of more drug-like compounds is likely to be most productive.

G-quadruplexes as targets for drug design

Pharmacology & …, 2000

G-quadruplexes are a family of secondary DNA structures formed in the presence of monovalent cations that consist of four-stranded structures in which Hoogsteen base-pairing stabilizes G-tetrad structures. These structures are proposed to exist in vivo, although direct confirmatory evidence is lacking. Guanine-rich regions of DNA capable of forming G-quadruplex structures are found in a variety of chromosomal regions, including telomeres and promoter regions of DNA. In this review, we describe the design of three separate groups of G-quadruplex-interactive compounds and their interaction with G-quadruplex DNA. Using the first group of compounds (anthraquinones), we describe experiments that provide the proof of concept that a G-quadruplex is required for inhibition of telomerase. Using the second group of compounds (perylenes), we describe the structure of a G-quadruplex-ligand complex and its effect on the dynamics of formation and enzymatic unwinding of the quadruplex. For the third group of compounds (porphyrins), we describe the experiments that relate the biological effects to their interactions with G-quadruplexes.

Identification and Characterization of New DNA G-Quadruplex Binders Selected by a Combination of Ligand and Structure-Based Virtual Screening Approaches

Journal of Medicinal Chemistry, 2013

Nowadays, it has been demonstrated that DNA G-quadruplex arrangements are involved in cellular aging and cancer, thus boosting the discovery of selective binders for these DNA secondary structures. By taking advantage of available structural and biological information on these structures, we performed a high throughput in silico screening of commercially available molecules databases by merging ligand-and structure-based approaches by means of docking experiments. Compounds selected by the virtual screening procedure were then tested for their ability to interact with the human telomeric G-quadruplex folding by circular dichroism, fluorescence spectroscopy, and photodynamic techniques. Interestingly, our screening succeeded in retrieving a new promising scaffold for G-quadruplex binders characterized by a psoralen moiety.

Common G-Quadruplex Binding Agents Found to Interact With i-Motif-Forming DNA: Unexpected Multi-Target-Directed Compounds

Frontiers in chemistry, 2018

G-quadruplex (G4) and i-motif (iM) are four-stranded non-canonical nucleic acid structural arrangements. Recent evidences suggest that these DNA structures exist in living cells and could be involved in several cancer-related processes, thus representing an attractive target for anticancer drug discovery. Efforts toward the development of G4 targeting compounds have led to a number of effective bioactive ligands. Herein, employing several biophysical methodologies, we studied the ability of some well-known G4 ligands to interact with iM-forming DNA. The data showed that the investigated compounds are actually able to interact with both DNA , thus acting as multi-target-directed agents. Interestingly, while all the compounds stabilize the G4, some of them significantly reduce the stability of the iM. The present study highlights the importance, when studying G4-targeting compounds, of evaluating also their behavior toward the i-motif counterpart.

G-Quadruplex Recognition by Quinacridines: a SAR, NMR, and Biological Study

Chemmedchem, 2007

The synthesis of a novel group of quinacridine-based ligands (MMQs) is described along with an evaluation of their G-quadruplex binding properties. A set of biophysical assays was applied to characterize their interaction with DNA quadruplexes: FRET–melting experiments and equilibrium microdialysis were used to evaluate their quadruplex affinity and their ability to discriminate quadruplexes across a broad panel of DNA structures. All data collected support the proposed model of interaction of these compounds with G-quadruplexes, which is furthermore confirmed by a solution structure determined by 2D NMR experiments. Finally, the activity of the MMQ series against tumor cell growth is reported, and the data support the potential of quadruplex-interactive compounds for use in anticancer approaches.

The G quadruplex and its Ligands in anticancer therapy

G Quadruplex Ligands as a valid avenue for Anticancer Drug Development , 2019

The DNA double helix represents an important target for a huge number of anti cancer drugs, and for many years substances with toxic side effects have been used in anticancer therapy. The structure and biological function of G quadruplex structures have been explored and there is an interest in them as targets for anti cancer drugs. This report focuses on the structure and function of the G-quadruplex as well as the analysis of targeting them in oncogene cmyc, ribosomal and human telomeric DNA. The G-quadruplex-ligand complex is discussed and there is also a review on a number of small molecules that have shown to be effective in binding specifically to G-quadruplex complexes.. Information gathered from X ray crystallography and NMR, among others, is discussed. The review and the information collated will be important for the development of drugs targeting quadruplexes from particular genes.