Incorporation of oat milk with probiotic Lacticaseibacillus casei AP improves the quality of kefir produced from goat milk (original) (raw)
Abstract
In this study, we evaluated the quality of kefir with combined additions of oat milk (8, 12, and 16% w/v) and Lacticaseibacillus casei AP (2 and 4% v/v), and observed the products' physicochemical characteristics (nutrient content, pH and acidity, viscosity and syneresis, ethanol concentration, and fatty acid profiles), microbiological characteristics (total lactic acid bacteria, total plate count, total probiotic, and total yeast), and sensory characteristics. The result showed that an increasing level of oat milk addition decreased water content and improved viscosity. A combination of 16% oat milk and 4% (v/v) L. casei AP increased the viscosity and water content, and resulted in the highest favorability and acceptability of kefir products. However, the increased concentration of L. casei AP inoculum and oat milk quantity did not affect microbiological qualities. It can be concluded that incorporating 16% oat milk and 4% L. casei AP improves the physical quality and sensory characteristics of kefir products.
Figures (6)
mPa’: millipascal-sekon. Table 1. Quality of raw materials.
Different superscript letters within line indicate P < 0.05. Table 2. Physicochemical properties of kefir produced using different concentrations of Lacticaseibacillus casei AP as starter culture and incorporation of various oat milk volumes.
Table 3. Microbiological characteristics of goat milk kefir with the combined addition of oat milk and Lacticaseibacillus casei AP.
Different superscript letters within line and column indicate P < 0.05. 'Caproic Acid (C6:0); *Caprilic Acid (C8:0), Capric Acid (C10:0), Undecanoic Acid (C11:0); *Lauric Acic (C12:0), Myristic Acid (C14:0), Pentadecanoic Acid (C15:0), Palmitic Acid (C16:0), Heptadecanoic Acid (C17:0), Stearic Acid (C18:0), Arachidic Acid (C20:0), Cis-10-Pentadecenoi: Acid Methyl Acid (C15:1), Palmitoleic Acid (C16:1), Cis-1-Heptadecanoic Acid (C17:1), y-Linolenic Acid (C18:3n6), Linoleate Acid (C18:2) + Linolelaidate (C18:2n9t), Cis-9-Olea' Acid (18:1) + trans 9 elaidat acid (C19:1n9c), Linolenic Acid (C18:3), Cis-11-Eicosenoic Acid (C20:1), Cis-11-14-17-eicosatrienoat (C20:3n6), Erucat Acid (C22:1n9), Cis-13-16- Docosadienoic Acid Methyl Ester (C22:2), Nervonate Acid (C24:1); ‘Lauric Acid (C12:0), Myristic Acid (C14:0), Pentadecanoic Acid (C15:0), Palmitic Acid (C16:0), Heptadecanoic Acid (C17:0), Stearic Acid (C18:0), Arachidic Acid (C20:0); °Cis-10-Pentadecenoic Acid Methyl Acid (C15:1), Palmitoleic Acid (C16:1), Cis-1-Heptadecanoic Acid (C17:1), y-Linoleni« Acid (C18:3n6), Linoleate Acid (C18:2) + Linolelaidate (C18:2n9t), Cis-9-Oleat Acid (18:1) + trans 9 elaidat acid. (C19:1n9c), Linolenic Acid (C18:3), Cis-11-Eicosenoic Acid (C20:1) Cis-11-14-17-eicosatrienoat (C20:3n6), Erucat Acid (C22:1n9), Cis-13-16-Docosadienoic Acid Methyl Ester (C22:2), Nervonate Acid (C24:1); °Cis-10-Pentadecenoic Acid Methy Acid (C15:1), Palmitoleic Acid (C16:1), Cis-1-Heptadecanoic Acid (C17:1), Cis-9-Oleat Acid (18:1) + trans 9 elaidat acid (C19:1n9c), Cis-11-Eicosenoic Acid (C20:1), Erucat Acic (C22:1n9), Nervonate Acid (C24:1); ’y-Linolenic Acid (C18:3n6), Linoleate Acid (C18:2) + Linolelaidate (C18:2n9t), Linolenic Acid (C18:3), Cis-11-14-17-eicosatrienoat (C20:3n6) Cis-13-16-Docosadienoic Acid Methyl Ester (C22:2). Table 4. Fatty acids profile and groups detected in goat milk kefir added with oat milk and Lacticaseibacillus casei AP.
Different superscript letters within line and column indicate P < 0.05. 'Caproic Acid (C6:0); *Caprilic Acid (C8:0), Capric Acid (C10:0), Undecanoic Acid (C11:0); *Lauric Acid (C12:0), Myristic Acid (C14:0), Pentadecanoic Acid (C15:0), Palmitic Acid (C16:0), Heptadecanoic Acid (C17:0), Stearic Acid (C18:0), Arachidic Acid (C20:0), Cis-10-Pentadecenoic Acid Methyl Acid (C15:1), Palmitoleic Acid (C16:1), Cis-1-Heptadecanoic Acid (C17:1), y-Linolenic Acid (C18:3n6), Linoleate Acid (C18:2) + Linolelaidate (C18:2n9t), Cis-9-Oleat Acid (18:1) + trans 9 elaidat acid (C19:1n9c), Linolenic Acid (C18:3), Cis-11-Eicosenoic Acid (C20:1), Cis-11-14-17-eicosatrienoat (C20:3n6), Erucat Acid (C22:1n9), Cis-13-16- Docosadienoic Acid Methyl Ester (C22:2), Nervonate Acid (C24:1); “Lauric Acid (C12:0), Myristic Acid (C14:0), Pentadecanoic Acid (C15:0), Palmitic Acid (C16:0), Heptadecanoic Acid (C17:0), Stearic Acid (C18:0), Arachidic Acid (C20:0); SCis-10-Pentadecenoic Acid Methyl Acid (C15:1), Palmitoleic Acid (C16:1), Cis-1-Heptadecanoic Acid (C17:1), y-Linolenic Acid (C18:3n6), Linoleate Acid (C18:2) + Linolelaidate (C18:2n9t), Cis-9-Oleat Acid (18:1) + trans 9 elaidat acid. (C19:1n9c), Linolenic Acid (C18:3), Cis-11-Eicosenoic Acid (C20:1), Cis-11-14-17-eicosatrienoat (C20:3n6), Erucat Acid (C22:1n9), Cis-13-16-Docosadienoic Acid Methyl Ester (C22:2), Nervonate Acid (C24:1); °Cis-10-Pentadecenoic Acid Methyl Acid (C15:1), Palmitoleic Acid (C16:1), Cis-1-Heptadecanoic Acid (C17:1), Cis-9-Oleat Acid (18:1) + trans 9 elaidat acid (C19:1n9c), Cis-11-Eicosenoic Acid (C20:1), Erucat Acid (C22:1n9), Nervonate Acid (C24:1); ’y-Linolenic Acid (C18:3n6), Linoleate Acid (C18:2) + Linolelaidate (C18:2n9t), Linolenic Acid (C18:3), Cis-11-14-17-eicosatrienoat (C20:3n6), Cis-13-16-Docosadienoic Acid Methyl Ester (C22:2).
Table 5. Sensory characteristics of kefir fermented using Lacticaseibacillus casei AP and oat milk supplementation. Different superscript letters within line indicate P < 0.05.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (48)
- Association of Official Analytical Chemists -AOAC. (1975). Official methods of analysis of the Association of Official Analytical Chemists (12th ed.). Washington: Benjamin Franklin Station.
- Barukčić, I., Gracin, L., Jambrak, A. R., & Božanić, R. (2017). Comparison of chemical, rheological and sensory properties of kefir produced by kefir grains and commercial kefir starter. Mljekarstvo: časopis za unaprjeđenje proizvodnje i prerade mlijeka, 67(3), 169-176. http:// dx.doi.org/10.15567/mljekarstvo.2017.0301.
- Bensmira, M., Nsabimana, C., & Jiang, B. (2010). Effects of fermentation conditions and homogenization pressure on the rheological properties of kefir. Lebensmittel-Wissenschaft + Technologie, 43(8), 1180-1184. http://dx.doi.org/10.1016/j.lwt.2010.04.005.
- Bernat, N., Cháfer, M., González-Martínez, C., Rodríguez-García, J., & Chiralt, A. (2015). Optimisation of oat milk formulation to obtain fermented derivatives by using probiotic Lactobacillus reuteri microorganisms. Food Science & Technology International, 21(2), 145- 157. http://dx.doi.org/10.1177/1082013213518936\. PMid:24464238.
- Biçer, Y., Telli, A. E., Sönmez, G., Turkal, G., Telli, N., & Uçar, G. (2021). Comparison of commercial and traditional kefir microbiota using metagenomic analysis. International Journal of Dairy Technology, 74(3), 528-534. http://dx.doi.org/10.1111/1471-0307.12789.
- Bodyfelt, F. W., Tobias, J., & Trout, G. M. (1988). The sensory evaluation of dairy products. New York: Van Nostrand Reinhold.
- Boycheva, S., Mihaylova, G., Naydenova, N., & Dimitrov, T. (2012). Amino acid and fatty acid content of yogurt supplemented with walnut and hazelnut pieces. Trakia Journal of Sciences, 10(2), 17-25.
- Brückner-Gühmann, M., Benthin, A., & Drusch, S. (2019). Enrichment of yoghurt with oat protein fractions: structure formation, textural properties and sensory evaluation. Food Hydrocolloids, 86, 146-153. http://dx.doi.org/10.1016/j.foodhyd.2018.03.019.
- Cais-Sokolińska, D., Wojtowski, J., Pikul, J., Danków, R., Majcher, M., Teichert, J., & Bagnicka, E. (2015). Formation of volatile compounds in kefir made of goat and sheep milk with high polyunsaturated fatty acid content. Journal of Dairy Science, 98(10), 6692-6705. http:// dx.doi.org/10.3168/jds.2015-9441. PMid:26277315.
- Champagne, C. P., Cruz, A. G., & Daga, M. (2018). Strategies to improve the functionality of probiotics in supplements and foods. Current Opinion in Food Science, 22, 160-166. http://dx.doi.org/10.1016/j. cofs.2018.04.008.
- Demiṙ, H., Simsek, M., & Yıldırım, G. (2021). Effect of oat milk pasteurization type on the characteristics of yogurt. LWT, 135, 110271. http://dx.doi.org/10.1016/j.lwt.2020.110271.
- Deora, N., & Deswal, A. (2018). Non-dairy based beverages: an insight. Journal of Nutrition, Food Research and Technology, 1(1), 1-4. http:// dx.doi.org/10.30881/jnfrt.00002.
- Dinkçi, N., Kesenkaş, H., Korel, F., & Kınık, Ö. (2015). An innovative approach: cow/oat milk based kefir. Mljekarstvo: časopis za unaprjeđenje proizvodnje i prerade mlijeka, 65(3), 177-186. http:// dx.doi.org/10.15567/mljekarstvo.2015.0304.
- Garofalo, C., Ferrocino, I., Reale, A., Sabbatini, R., Milanović, V., Alkić-Subašić, M., Boscaino, F., Aquilanti, L., Pasquini, M., Trombetta, M. F., Tavoletti, S., Coppola, R., Cocolin, L., Blesić, M., Sarić, Z., Clementi, F., & Osimani, A. (2020). Study of kefir drinks produced by backslopping method using kefir grains from Bosnia and Herzegovina: microbial dynamics and volatilome profile. Food Research International, 137, 109369. http://dx.doi.org/10.1016/j. foodres.2020.109369. PMid:33233071.
- Goktas, H., Dikmen, H., Demirbas, F., Sagdic, O., & Dertli, E. (2021). Characterisation of probiotic properties of yeast strains isolated from kefir samples. International Journal of Dairy Technology, 74(4), 715-722. http://dx.doi.org/10.1111/1471-0307.12802.
- HadiNezhad, M., Duc, C., Han, N., & Hosseinian, F. (2013). Flaxseed soluble dietary fibre enhances lactic acid bacterial survival and growth in kefir and possesses high antioxidant capacity. Journal of Food Research, 2(5), 152-163. http://dx.doi.org/10.5539/jfr.v2n5p152.
- Hadjimbei, E., Botsaris, G., Goulas, V., Alexandri, E., Gekas, V., & Gerothanassis, I. P. (2020). Functional stability of goats' milk yoghurt supplemented with Pistacia atlantica resin extracts and Saccharomyces boulardii. International Journal of Dairy Technology, 73(1), 134-143. http://dx.doi.org/10.1111/1471-0307.12629.
- Han, X., Yang, Z., Jing, X., Yu, P., Zhang, Y., Yi, H., & Zhang, L. (2016). Improvement of the texture of yogurt by use of exopolysaccharide producing lactic acid bacteria. BioMed Research International, 2016, 7945675. http://dx.doi.org/10.1155/2016/7945675\. PMid:27294135.
- John, S. M., & Deeseenthum, S. (2015). Properties and benefits of kefir-a review. Songklanakarin Journal of Science and Technology, 37(3), 275-282.
- Kesenkaş, H. (2011). Antioxidant properties of kefir produced from different cow and soy milk mixtures. Journal of Agricultural Sciences, 17(3), 253-259.
- Kustyawati, M. E., & Tobing, D. (2012). Profil asam lemak dan asam amino susu kambing segar dan terfermentasi [Fatty acid and amino acid profile of fresh and fermented goat milk]. Jurnal Teknologi dan Industri Pangan, 23(1), 47.
- Kwak, H., Park, S., & Kim, D. (1996). Biostabilization of kefir with a nonlactose-fermenting yeast. Journal of Dairy Science, 79(6), 937- 942. http://dx.doi.org/10.3168/jds.S0022-0302(96)76444-5.
- Larosa, C. P., Balthazar, C. F., Guimarães, J. T., Margalho, L. P., Lemos, F. S., Oliveira, F. L., Abud, Y. K., Sant' Anna, C., Duarte, M. C. K., Granato, D., Raices, R. S. L., Freitas, M. Q., Sant' Ana, A. S., Esmerino, E. A., Pimentel, T. C., Silva, M. C., & Cruz, A. G. (2021a). Can sucrose- substitutes increase the antagonistic activity against foodborne pathogens, and improve the technological and functional properties of sheep milk kefir? Food Chemistry, 351, 129290. http://dx.doi. org/10.1016/j.foodchem.2021.129290. PMid:33631613.
- Larosa, C. P., Balthazar, C. F., Guimarâes, J. T., Rocha, R. S., Silva, R., Pimentel, T. C., Granato, D., Duarte, M. C. K., Silva, M. C., Freitas, M. Q., Cruz, A. G., & Esmerino, E. A. (2021b). Sheep milk kefir sweetened with different sugars: Sensory acceptance and consumer emotion profiling. Journal of Dairy Science, 104(1), 295-300. http:// dx.doi.org/10.3168/jds.2020-18702. PMid:33162085.
- Lengkey, H., & Balia, R. (2014). The effect of starter dosage and fermentation time on pH and lactic acid production. Biotechnology in Animal Husbandry, 30(2), 339-347. http://dx.doi.org/10.2298/ BAH1402339L.
- Lucatto, J. N., Silva-Buzanello, R. A., Mendonça, S. N. T. G., Lazarotto, T. C., Sanchez, J. L., Bona, E., & Drunkler, D. A. (2020). Performance of different microbial cultures in potentially probiotic and prebiotic yoghurts from cow and goat milks. International Journal of Dairy Technology, 73(1), 144-156. http://dx.doi.org/10.1111/1471-0307.12655.
- Mitra, S., & Ghosh, B. C. (2020). Quality characteristics of kefir as a carrier for probiotic Lactobacillus rhamnosus GG. International Journal of Dairy Technology, 73(2), 384-391. http://dx.doi.org/10.1111/1471- 0307.12664.
- Mituniewicz-Małek, A., Zielińska, D., & Ziarno, M. (2019). Probiotic monocultures in fermented goat milk beverages-sensory quality of final product. International Journal of Dairy Technology, 72(2), 240-247. http://dx.doi.org/10.1111/1471-0307.12576.
- Nurliyani, Harmayani, E., & Sunarti (2014). Microbiological quality, fatty acid and amino acid profiles of kefir produced from combination of goat and soy milk. Pakistan Journal of Nutrition, 13(2), 107-115. http://dx.doi.org/10.3923/pjn.2014.107.115.
- Nurliyani, Sadewa, A. H., & Sunarti (2015). Kefir properties prepared with goat milk and black rice (Oryza sativa L.) extract and its influence on the improvement of pancreatic β-cells in diabetic rats. Emirates Journal of Food and Agriculture, 27(10), 727-735. http:// dx.doi.org/10.9755/ejfa.2015-04-138.
- Piggott, J. (2011). Alcoholic beverages: sensory evaluation and consumer research. Cambridge: Woodhead Publishing Limited.
- Ramirez-Santiago, C., Ramos-Solis, L., Lobato-Calleros, C., Peña-Valdivia, C., Vernon-Carter, E. J. & Alvarez-Ramírez, J. (2010). Enrichment of stirred yogurt with soluble dietary fiber from Pachyrhizus erosus L. Urban: Effect on syneresis, microstructure and rheological properties. Journal of Food Engineering, 101(3): 229-235.
- Ranadheera, C. S., Evans, C. A., Baines, S. K., Balthazar, C. F., Cruz, A. G., Esmerino, E. A., Freitas, M. Q., Pimentel, T. C., Wittwer, A. E., Naumovski, N., Graça, J. S., Sant' Ana, A. S., Ajlouni, S., & Vasiljevic, T. (2019). Probiotics in goat milk products: delivery capacity and ability to improve sensory attributes. Comprehensive Reviews in Food Science and Food Safety, 18(4), 867-882. http:// dx.doi.org/10.1111/1541-4337.12447. PMid:33337004.
- Rumeen, S. F., Yelnetty, A., Tamasoleng, M., & Lontaan, N. (2017). Penggunaan level sukrosa terhadap sifat sensoris kefir susu sapi. Jurnal Zootek, 38(1), 123-130. http://dx.doi.org/10.35792/ zot.38.1.2018.18565.
- Santos, W. M., Nobre, M. S. C., Cavalcanti, M. T., Santos, K. M. O., Salles, H. O., & Buriti, F. C. A. (2019). Proteolysis of reconstituted goat whey fermented by Streptococcus thermophilus in co-culture with commercial probiotic Lactobacillus strains. International Journal of Dairy Technology, 72(4), 559-568. http://dx.doi.org/10.1111/1471-0307.12621.
- Satir, G., & Guzel-Seydim, Z. B. (2016). How kefir fermentation can affect product composition? Small Ruminant Research, 134, 1-7. http://dx.doi.org/10.1016/j.smallrumres.2015.10.022.
- Setyawardani, T., & Sumarmono, J. (2015). Chemical and microbiological characteristics of goat milk kefir during storage under different temperatures. Journal of The Indonesian Tropical Animal Agriculture, 40(3), 183-188. http://dx.doi.org/10.14710/jitaa.40.3.183-188.
- Setyawardani, T., Sumarmono, J., Arief, I. I., Rahardjo, A. H. D., Widayaka, K., & Santosa, S. S. (2020). Improving composition and microbiological characteristics of milk kefir using colostrum. Food Science and Technology, 40(Suppl. 2), 699-707. http://dx.doi. org/10.1590/fst.31719.
- Sumarmono, J., Sulistyowati, M., & Soenarto (2015). Fatty acids profiles of fresh milk, yogurt and concentrated yogurt from Peranakan Etawah goat milk. Procedia Food Science, 3, 216-222. http://dx.doi. org/10.1016/j.profoo.2015.01.024.
- Widodo, W., Anindita, N. S., Taufiq, T. T., & Wahyuningsih, T. D. (2012a). Identification of Pediococcus strains isolated from feces of Indonesian infants with in vitro capability to consume prebiotic inulin and to adhere on mucus. Indonesian Journal of Biotechnology, 17(2), 132-143.
- Widodo, W., Anindita, N., Tiyas, T., & Wahyuningsih, T. (2014). Evaluation of two Lactobacillus strains as probiotics with emphasis in utilizing prebiotic inulin as energy source. International Research Journal of Microbiology, 5, 33-40.
- Widodo, W., Harsita, P. A., Sukarno, A. S., & Nurrochmad, A. (2019). Antidiabetic effect of milk fermented using intestinal probiotics. Nutrition & Food Science, 49(6), 1063-1074. http://dx.doi.org/10.1108/ NFS-11-2018-0326.
- Widodo, W., Taufiq, T. T., Aryati, E., Kurniawati, A., & Asmara, W. (2012b). Human origin Lactobacillus casei isolated from Indonesian infants demonstrating potential characteristics as probiotics in vitro. Indonesian Journal of Biotechnology, 17(1), 79-89.
- Widodo, T. D., Wahyuningsih, A., Nurrochmad, E., Wahyuni, T. T., Taufiq, N. S., Anindita, S., Lestari, P. A., Harsita, A. S., Sukarno & Handaka, R. (2017). Bakteri Asam laktat Strain Lokal. Yogyakarta: Gadjah Mada University Press.
- Wulansari, P. D., Nurliyani, Endah, S. R. N., Nofriyaldi, A., & Harmayani, E. (2021). Microbiological, chemical, fatty acid and antioxidant characteristics of goat milk kefir enriched with Moringa oleifera leaf powder during storage. Food Science and Technology. Ahead of print.
- Zamberi, N. R., Abu, N., Mohamed, N. E., Nordin, N., Keong, Y. S., Beh, B. K., Zakaria, Z. A. B., Rahman, N. M. A. N. A., & Alitheen, N. B. (2016). The antimetastatic and antiangiogenesis effects of kefir water on murine breast cancer cells. Integrative Cancer Therapies, 15(4), NP53-NP66. http://dx.doi.org/10.1177/1534735416642862\. PMid:27230756.
- Zendeboodi, F., Khorshidian, N., Mortazavian, A. M., & Cruz, A. G. (2020). Probiotic: conceptualization from a new approach. Current Opinion in Food Science, 32, 103-123. http://dx.doi.org/10.1016/j. cofs.2020.03.009.
- Zhang, P.-P., Hu, X.-Z., Zhen, H.-M., Xu, C., & Fan, M.-T. (2012). Oat β-glucan increased ATPases activity and energy charge in small intestine of rats. Journal of Agricultural and Food Chemistry, 60(39), 9822-9827. http://dx.doi.org/10.1021/jf3017496\. PMid:22970825.