Some properties and estimates for φ-sub-Gaussian stochastic processes (original) (raw)
Related papers
Estimation of distribution of suprema of a strictly ϕ-sub-Gaussian quasi shot noise process
Вісник, 2019
У роботi дослiджуються властивостi строго ϕ-субгауссового процесу квазiдробового ефекту X(t) = +∞ −∞ g(t, u)dξ(u), t ∈ R, породженого випадковим процесом ξ та функцiєю вiдгуку g. Виведено новi оцiнки для розподiлiв супремумiв таких процесiв. Наведено приклад застосування отриманих результатiв. Ключовi слова: дробовий шум, процеси дробового ефекту, розподiл супремуму процесу, ϕсубгауссовi процеси. In this paper, there are studied properties of a strictly ϕ-sub-Gaussian quasi shot noise process X(t) = +∞ −∞ g(t, u)dξ(u), t ∈ R, generated by the process ξ and the response function g. New estimates for distributions of suprema of such processes are derived. An example of application of the obtained results is given.
Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics and Mathematics, 2021
In the paper, we consider the problem of simulation of a strictly φ-sub-Gaussian generalized fracti-onal Brownian motion. Simulation of random processes and fields is used in many areas of natural and social sciences. A special place is occupied by methods of simulation of the Wiener process and fractional Brownian motion, as these processes are widely used in financial and actuarial mathematics, queueing theory etc. We study some specific class of processes of generalized fractional Brownian motion and derive conditions, under which the model based on a series representation approximates a strictly φ-sub-Gaussian generalized fractional Brownian motion with given reliability and accuracy in the space C([0; 1]) in the case, when φ(x) = exp{|x|} − |x| − 1, x ∈ R. In order to obtain these results, we use some results from the theory of φ-sub-Gaussian random processes. Necessary simulation parameters are calculated and models of sample pathes of corresponding processes are constructed f...
Analytical properties of sample paths of some stochastic processes
Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics and Mathematics, 2020
The study of the analytical properties of random processes and their functionals, without a doubt, was and remains the relevant topic of the theory of random processes. The first result from which the study of the local properties of random processes began is Kolmogorov’s theorem on sample continuity with probability one. The classic result for Gaussian random processes is Dudley’s theorem. This paper is devoted to the study of local properties of sample paths of random processes that can be represented as a sum of squares of Gaussian random processes. Such processes are called square-Gaussian. We investigate the sufficient conditions of sample continuity with probability 1 for square-Gaussian processes based on the convergence of entropy Dudley type integrals. The estimation of the distribution of the continuity module is studied for square-Gaussian random processes. It is considered in detail an example with an estimator (correlogram) of the covariance function of a Gaussian stati...
On stochastic equations in filtering of Markov processes
Lithuanian Mathematical Journal
The abstracts (in two languages) can be found in the pdf file of the article. Original author name(s) and title in Russian and Lithuanian: Д. Сургайлис. О стохастических уравнениях фильтрации марковских процессов D. Surgailis. Apie Markovo procesų filtracijos stochastines lygtis
Науковий вісник Ужгородського університету. Серія: Математика і інформатика
Робота присвячена подальшому розвитку теорії моделювання гауссових стаціонарних випадкових процесів за методом, який запропонував і розвивав Ю. В. Козаченко. Розглянуто застосування теорії L2(Ω)-процесів при моделюванні гауссових стаціонарних випадкових процесів. Використовуючи оцінки норм та деякі властивості і теореми L2(Ω)-процесів, для моделі одержано розбиття спектрального проміжку, при якому модель наближатиме процес з заданими точністю і надійністю в рівномірній метриці. У середовищі Python було змодельовано процес для часткового випадку.