Biophysical modeling of VIM to assess contributions of oscillatory activity to essential tremor (original) (raw)

Essential tremor (ET) is the most common movement disorder, in which the primary symptom is a prominent, involuntary 4–10 Hz rhythmic movement. The presence of tremor frequency oscillations (TFOs) in the ventral intermediate nucleus of the thalamus (VIM) is well-established, but it is often assumed that it is driven by cerebellar tremor frequency activity, while the role of intrinsic oscillatory activity in VIM is not clear. An improved understanding of the mechanisms of tremor and non-tremor frequency activity in VIM is critical to the development of improved pharmacological and neuromodulatory therapies. Starting from a canonical model of thalamus, we developed a biophysically-principled computational model of tremor field activity in the VIM, coupled with the thalamic reticular nucleus (TRN). We simulated TFOs in the model generated either by extrinsic tremor-periodic drive or intrinsic VIM-TRN interaction to understand whether these networks exhibited distinct biophysical proper...