Replication-Associated Activities of Purified Human Papillomavirus Type 11 E1 Helicase (original) (raw)

Requirement for the E1 helicase C-terminal domain in papillomavirus DNA replication in vivo

Journal of virology, 2016

The papillomavirus (PV) E1 helicase contains a conserved C-terminal domain (CTD), located next to its ATP-binding site, whose function in vivo is still poorly understood. The CTD is comprised of an alpha helix followed by an acidic region (AR) and a C-terminal extension termed the C-tail. Recent biochemical studies on BPV1 E1 showed that the AR and C-tail regulate the oligomerization of the protein into a double-hexamer at the origin. In this study, we assessed the importance of the CTD of HPV11 E1 in vivo, using a cell-based DNA replication assay. Our results indicate that combined deletion of the AR and C-tail drastically reduces DNA replication, by 85%, and that further truncation into the alpha helical region compromises the structural integrity of the E1 helicase domain and its interaction with E2. Surprisingly, removal of the C-tail alone or mutation of highly conserved residues within this domain still allows significant levels of DNA replication (55%). This is in contrast to...

The E1 protein of bovine papilloma virus 1 is an ATP-dependent DNA helicase

Proceedings of the National Academy of Sciences, 1993

For efficient DNA replication of papillomaviruses, only two viral-encoded proteins, El and E2, are required. Other proteins and factors are provided by the host cell. E2 is an enhancer ofboth transcription and replication and is known to help El bind cooperatively to the origin of DNA replication. El is sufficient for replication in extracts prepared from permissive ceils, but the activity is enhanced by E2. Here we show that purified El can act as an ATP-dependent DNA helicase. To measure this activity, we have used strand displacement, unwinding of topologically constrained DNA, denaturation of duplex fragments, and electron microscopy. The ability of El to unwind circular DNA is found to be independent of origin-specific viral DNA sequences under a variety of experimental conditions. In unfractionated cellular extracts, El-dependent viral DNA replication is origin-dependent, but at elevated El concentrations, replication can occur on nonorigin-containing DNA templates. This conversion from an origin-dependent replication system to a nonspecific initiator system is discussed in the context of the current understanding of the initiation of chromosomal DNA replication.

Characterization of the Minimal DNA Binding Domain of the Human Papillomavirus E1 Helicase: Fluorescence Anisotropy Studies and Characterization of a Dimerization-Defective Mutant Protein

Journal of Virology, 2003

The E1 helicase of papillomaviruses is required for replication of the viral double-stranded DNA genome, in conjunction with cellular factors. DNA replication is initiated at the viral origin by the assembly of E1 monomers into oligomeric complexes that have unwinding activity. In vivo, this process is catalyzed by the viral E2 protein, which recruits E1 specifically at the origin. For bovine papillomavirus (BPV) E1 a minimal DNA-binding domain (DBD) has been identified N-terminal to the enzymatic domain. In this study, we characterized the DBD of human papillomavirus 11 (HPV11), HPV18, and BPV E1 using a quantitative DNA binding assay based on fluorescence anisotropy. We found that the HPV11 DBD binds DNA with an affinity and sequence requirement comparable to those of the analogous domain of BPV but that the HPV18 DBD has a higher affinity for nonspecific DNA. By comparing the DNA-binding properties of a dimerization-defective protein to those of the wild type, we provide evidence that dimerization of the HPV11 DBD occurs only on two appropriately positioned E1 binding-sites and contributes approximately a 10-fold increase in binding affinity. In contrast, the HPV11 E1 helicase purified as preformed hexamers binds DNA with little sequence specificity, similarly to a dimerization-defective DBD. Finally, we show that the amino acid substitution that prevents dimerization reduces the ability of a longer E1 protein to bind to the origin in vitro and to support transient HPV DNA replication in vivo, but has little effect on its ATPase activity or ability to oligomerize into hexamers. These results are discussed in light of a model of the assembly of replication-competent double hexameric E1 complexes at the origin.

Identification of Domains of the Human Papillomavirus Type 11 E1 Helicase Involved in Oligomerization and Binding to the Viral Origin

Journal of Virology, 2000

The E1 helicase of papillomavirus is required, in addition to host cell DNA replication factors, during the initiation and elongation phases of viral episome replication. During initiation, the viral E2 protein promotes the assembly of enzymatically active multimeric E1 complexes at the viral origin of DNA replication. In this study we used the two-hybrid system and chemical cross-linking to demonstrate that human papillomavirus type 11 (HPV11) E1 can self-associate in yeast and form hexamers in vitro in a reaction stimulated by singlestranded DNA. Self-association in yeast was most readily detected using constructs spanning the E1 C-terminal domain (amino acids 353 to 649) and was dependent on a minimal E1-E1 interaction region located between amino acids 353 and 431. The E1 C-terminal domain was also able to oligomerize in vitro but, in contrast to wild-type E1, did so efficiently in the absence of single-stranded DNA. Sequences located between amino acids 191 and 353 were necessary for single-stranded DNA to modulate oligomerization of E1 and were also required, together with the rest of the C terminus, for binding of E1 to the origin.

Role of the ATP-binding domain of the human papillomavirus type 11 E1 helicase in E2-dependent binding to the origin

Journal of virology, 1999

Replication of the genome of human papillomaviruses (HPV) is initiated by the recruitment of the viral E1 helicase to the origin of DNA replication by the viral E2 protein, which binds specifically to the origin. We determined, for HPV type 11 (HPV-11), that the C-terminal 296 amino acids of E1 are sufficient for interaction with the transactivation domain of E2 in the yeast two-hybrid system and in vitro. This region of E1 encompasses the ATP-binding domain. Here we have examined the role of this ATP-binding domain, and of ATP, on E2-dependent binding of E1 to the origin. Several amino acid substitutions in the phosphate-binding loop (P loop), which is implicated in binding the triphosphate moiety of ATP, abolished E2 binding, indicating that the structural integrity of this domain is essential for the interaction. The structural constraints imposed on the E1 P loop may differ between HPV-11 and bovine papillomavirus type 1 (BPV-1), since the P479S substitution that inactivates BPV...

Remodeling of the Human Papillomavirus Type 11 Replication Origin into Discrete Nucleoprotein Particles and Looped Structures by the E2 Protein

Journal of Molecular Biology, 2008

The human papillomavirus (HPV) DNA replication origin (ori) shares a common theme with many DNA control elements in having multiple binding sites for one or more proteins spaced over several hundreds of base pairs. The HPV type 11 ori spans 103 bp and contains three palindromic E2 binding sites (E2BS-2, E2BS-3, and E2BS-4) for the dimeric E2 ori binding protein. These sites are separated by 64 and 3 bp. E2BS-1 is located 288 bp upstream of E2BS-2 and is not required for efficient transient or cell-free replication. In this study, electron microscopy was used to visualize complexes of HPV-11 DNA ori bound by purified E2 protein. DNA containing only E2BS-2 showed a single E2 dimer bound. DNA containing E2BS-3 and E2BS-4 showed two side-by-side E2 dimers, while DNA containing E2BS-2, E2BS-3, and E2BS-4 exhibited a large disk/ring-shaped protein particle bound, indicating that the DNA had been remodeled into a discrete complex, likely containing an E2 hexamer. With all four binding sites present, up to 27% of the DNA molecules were arranged into loops by E2, the majority of which spanned E2BS-1 and one of the other three sites. Studies on the dependence of looping on salt, ATP, and DTT using fulllength E2 and an E2 protein containing only the carboxyl-terminal DNA binding and protein dimerization domain suggest that looping is dependent on the N-terminal domain and factors that may affect the manner in which E2 scans DNA for binding sites. The role of these structures in the modeling and regulation of the HPV-11 ori is discussed.

DNA-binding domain of bovine papillomavirus type 1 E1 helicase: structural and functional aspects

Journal of Virology, 1993

The E1 protein of bovine papillomavirus type 1 is a multifunctional enzyme required for papillomaviral DNA replication. It assists in the initiation of replication both as a site-specific DNA-binding protein and as a DNA helicase. Previous work has indicated that at limiting E1 concentrations, the E2 protein is required for efficient E1 binding to the replication origin. In this study, we have defined the domain of the E1 protein required for site-specific DNA binding. Experiments with a series of truncated proteins have shown that the first amino-terminal 299 amino acids contain the DNA-binding domain; however, the coterminal M protein, which is homologous to E1 for the first 129 amino acids, does not bind origin DNA. A series of small internal deletions and substitution mutations in the DNA-binding domain of E1 show that specific basic residues in this region of the protein, which are conserved in all E1 proteins of the papillomavirus family, likely play a direct role in binding D...

Papillomavirus E1 helicase assembly maintains an asymmetric state in the absence of DNA and nucleotide cofactors

Nucleic Acids Research, 2007

Concerted, stochastic and sequential mechanisms of action have been proposed for different hexameric AAA+ molecular motors. Here we report the crystal structure of the E1 helicase from bovine papillomavirus, where asymmetric assembly is for the first time observed in the absence of nucleotide cofactors and DNA. Surprisingly, the ATP-binding sites adopt specific conformations linked to positional changes in the DNA-binding hairpins, which follow a wave-like trajectory, as observed previously in the E1/DNA/ADP complex. The protein's assembly thus maintains such an asymmetric state in the absence of DNA and nucleotide cofactors, allowing consideration of the E1 helicase action as the propagation of a conformational wave around the protein ring. The data imply that the wave's propagation within the AAA+ domains is not necessarily coupled with a strictly sequential hydrolysis of ATP. Since a single ATP hydrolysis event would affect the whole hexamer, such events may simply serve to rectify the direction of the wave's motion.

Chaperone Proteins Abrogate Inhibition of the Human Papillomavirus (HPV) E1 Replicative Helicase by the HPV E2 Protein

Molecular and Cellular Biology, 2002

Human papillomavirus (HPV) DNA replication requires the viral origin recognition protein E2 and the presumptive viral replicative helicase E1. We now report for the first time efficient DNA unwinding by a purified HPV E1 protein. Unwinding depends on a supercoiled DNA substrate, topoisomerase I, singlestranded-DNA-binding protein, and ATP, but not an origin. Electron microscopy revealed completely unwound molecules. Intermediates contained two single-stranded loops emanating from a single protein complex, suggesting a bidirectional E1 helicase which translocated the flanking DNA in an inward direction. We showed that E2 protein partially inhibited DNA unwinding and that Hsp70 or Hsp40, which we reported previously to stimulate HPV-11 E1 binding to the origin and promote dihexameric E1 formation, apparently displaced E2 and abolished inhibition. Neither E2 nor chaperone proteins were detected in unwinding complexes. These results suggest that chaperones play important roles in the assembly and activation of a replicative helicase in higher eukaryotes. An E1 mutation in the ATP binding site caused deficient binding and unwinding of origin DNA, indicating the importance of ATP binding in efficient helicase assembly on the origin.