Real-Time Control of the Hand by Intracortically Controlled Functional Neuromuscular Stimulation (original) (raw)

The purpose of this study was to develop an animal model to evaluate the efficacy of a brain machine interface (BMI) to control a neuroprosthesis intended to restore hand function via functional neuromuscular stimulation (FNS). We have implemented the system in a single primate, whose limb could be temporarily paralyzed by a reversible peripheral nerve block. Recordings from the primary motor cortex were obtained from a 100-electrode array in the intact monkey, and used to predict the activity of a variety of wrist and hand muscles. These predictions were calculated in real-time, and used as inputs to a 4 channel neuromuscular stimulator for electrically activating the paralyzed muscles. Here we demonstrate that the BMI can be used to restore voluntary control of wrist flexion following muscle paralysis.