Seasonally active frost-dust avalanches on a north polar scarp of Mars captured by HiRISE (original) (raw)
Related papers
Meter-scale MRO/HiRISE camera images of dune slipfaces in the north polar sand sea of Mars reveal the presence of deep alcoves above depositional fans. These features are apparently active under current climatic conditions, because they form between observations taken in subsequent Mars years. Recently, other workers have hypothesized that the alcoves form due to destabilization and mass-wasting during sublimation of CO2 frost in the spring. While there is evidence for springtime modification of these features, our analysis of early springtime images reveals that over 80% of the new alcoves are visible underneath the CO2 frost. Thus, we present an alternative hypothesis that formation of new alcoves and fans occurs prior to CO2 deposition. We propose that fans and alcoves form primarily by aeolian processes in the mid- to late summer, through a sequence of aeolian deposition on the slipface, over-steepening, failure, and dry granular flow. An aeolian origin is supported by the orientations of the alcoves, which are consistent with recent wind directions. Furthermore, morphologically similar but much smaller alcoves form on terrestrial dune slipfaces, and the size differences between the terrestrial and martian features may reflect cohesion in the near-subsurface of the martian features. The size and preservation of the largest alcoves on the martian slipfaces also support the presence of an indurated surface layer; thus, new alcoves might be sites of early spring CO2 sublimation and secondary mass-wasting because they act as a window to looser, less indurated materials that warm up more quickly in the spring.
Icarus, 2013
We present an overview of our analyses of HiRISE observations of spring evolution of selected dune areas of the north polar erg. The north polar erg is covered annually by seasonal volatile ice layer, a mixture of CO2 and H2O with mineral dust contamination. In spring, this layer sublimes creating visually enigmatic phenomena, e.g. dark and bright fan-shaped deposits, dark-bright-dark bandings, dark down-slope streaks, and seasonal polygonal cracks. Similar phenomena in southern polar areas are believed to be related to the specific process of solid-state greenhouse effect. In the north, it is currently unclear if the solid-state greenhouse effect is able to explain all the observed phenomena especially because the increased influence of H2O on the time scales of this process has not yet been quantified. HiRISE observations of our selected locations show that the ground exhibits a temporal behaviour similar to the one observed in the southern polar areas: a brightening phase starting close to the spring equinox with a subsequent darkening towards summer solstice. The resolution of HiRISE enabled us to study dunes and substrate individually and even distinguish between different developments on windward and slip face sides of single dunes. Differences in the seasonal evolution between steep slip faces and flatter substrate and windward sides of dunes have been identified and compared to CRISM data of CO2 and H2O distributions on dunes. We also observe small scale dark blotches that appear in early observations and tend to sustain a low reflectivity throughout the spring. These blotches can be regarded as the analogue of dark fan deposits in southern polar areas, leading us to the conclusion that both martian polar areas follow similar spring evolutions.
Icarus, 2013
We analyze a series of targeted CRISM and HiRISE observations of seven regions of interest at high latitudes in the Northern polar regions of Mars. These data allow us to investigate the temporal evolution of the composition of the seasonal ice cap during spring, with a special emphasis on peculiar phenomena occurring in the dune fields and in the vicinity of the scarps of the North Polar Layered Deposits (NPLDs). The strength of the spectral signature of CO2 ice continuously decreases during spring whereas the one of H2O ice first shows a strong increase until Ls = 50°. This evolution is consistent with a scenario previously established from analysis of OMEGA data, in which a thin layer of pure H2O ice progressively develops at the surface of the volatile layer. During early spring (Ls < 10°), widespread jet activity is observed by HiRISE while strong spectral signatures of CO2 ice are detected by CRISM. Later, around Ls = 20-40°, activity concentrates at the dune fields where CRISM also detects a spectral enrichment in CO2 ice, consistent with "Kieffer's model" (Kieffer, H.H. [2007]. J. Geophys. Res. 112, E08005. doi:10.1029/2006JE002816) for jet activity. Effects of wind are prominent across the dune fields and seem to strongly influence the sublimation of the volatile layer. Strong winds blowing down the scarps could also be responsible for the significant spatial and temporal variability of the surface ice composition observed close to the NPLD.