A generalized exponential relationship between the surface-enhanced Raman scattering (SERS) efficiency of gold/silver nanoisland arrangements and their non-dimensional interparticle distance/particle diameter ratio (original) (raw)

Abstract

The optimization of the geometrical properties of gold/silver nanoparticle arrangements to maximize their surface-enhanced Raman scattering (SERS) efficiency is studied in this work. For this purpose, the metallic nanostructures were created by thermally annealing gold and silver thin film layers deposited onto glass substrates. The SERS capabilities of the samples were evaluated by measuring an analyte solution of benzophenone with three different excitation laser wavelengths. Systematic investigations were carried out on different gold and silver nanoisland samples to determine how the SERS enhancement depends on the geometrical (particle diameter, interparticle distance) and optical parameters (plasmon wavelength) of the nanostructures, as well as on the wavelength of laser excitation. The importance of matching the excitation wavelength with the resonant plasmon absorbance properties of the surface was proved. However, it was also shown that the optimization of the geometrical properties of the nanoisland arrangements dominates over the selection of the excitation wavelength. A generalized exponential relationship between the SERS enhancement and the non-dimensional interparticle distance/particle diameter ratio was established. Optimal technological parameters for the fabrication of gold/silver nanoisland SERS substrates were proposed.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (49)

  1. L.T. Hoang, H.V. Pham, M.T.T. Nguyen, Investigation of the factors influencing the surface-enhanced raman scattering activity of silver nanoparticles, J. Electron. Mater. (2019) 1-8, http://dx.doi.org/10.1007/s11664-019-07870-8.
  2. C.L. Haynes, C.R. Yonzom, X. Zang, R.P. Van Duyne, Surface-enhanced Raman sensors: early history and the development of sensors for quantitative biowarfare agent and glucose detection, J. Raman Spectrosc. 36 (2005) 471-484, http://dx.doi.org/10.1002/jrs.1376.
  3. M. Fleischmann, P.J. Hendra, A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode, ChemR. Phys. Lett. 26 (1974) 163-166, http:// dx.doi.org/10.1016/0009-2614(74)85388-1.
  4. R. Pilot, R. Signorini, C. Durante, L. Orian, M. Bhamidipati, L. Fabris, A review on surface-enhanced raman scattering, Biosensors. 9 (2019) 1-100, http://dx. doi.org/10.3390/bios9020057.
  5. J. Choi, J.-H. Kim, J.-W. Oh, J.-M. Nam, Surface-enhanced raman scattering-based detection of hazardous chemicals in various phases and matrices with plasmonic nanostructures, Nanoscale. 11 (2019) 20379-20391, http://dx.doi.org/10.1039/c9nr07439b.
  6. S.-Y. Ding, E.-M. You, Z.-Q. Tian, M. Moskovits, Electromagnetic theories of surface-enhanced Raman spectroscopy, Chem. Soc. Rev. 46 (2017) 4042-4076, http://dx.doi.org/10.1039/c7cs00238f.
  7. A. Otto, The "chemical" (electronic) contribution to surface-enhanced Raman scattering, J. Raman Spectrosc. 36 (2005) 497-509, http://dx.doi.org/10.1002/ jrs.1355.
  8. A. Otto, Charge transfer in first layer enhanced Raman scattering and surface resistance, Q. Phys. Rev. 3 (2017) 1-14.
  9. H.K. Lee, Y.H. Lee, C.S.L. Koh, G.C. Phan-Quang, X. Han, C.L. Lay, X.Y. Ling, H.Y.F. Sim, Y.-C. Kao, Q. An, Designing surface-enhanced Raman scattering (SERS) platforms beyond hot-spot engineering: emerging opportunities in analyte manipulations and hybrid materials, Chem. Soc. Rev. 48 (2019) 731-756, http://dx.doi.org/10.1039/c7cs00786h.
  10. H. Chu, S. Song, C. Li, D. Gibson, Surface enhanced raman scattering substrates made by oblique angle deposition: methods and applications, Coatings 7 (2017) 1-23, http://dx.doi.org/10.3390/coatings7020026.
  11. P.A. Mosier-Boss, Review of SERS substrates for chemical sensing, Nanomaterials. 7 (2017) 142.
  12. S.-Y. Ding, X.-M. Zhang, B. Ren, Z.-Q. Tian, Surface-enhanced raman spectroscopy (SERS): general introduction, Encyclopedia of Analytical Chemistry (2014) 1-34, http://dx.doi.org/10.1002/9780470027318.a9276.
  13. Z.-Q. Tian, B. Ren, Infrared and raman spectroscopy in analysis of surfaces, Encyclopedia of Analytical Chemistry (2006) 1-40, http://dx.doi.org/10.1002/ 9780470027318.a2516.
  14. J. Theiss, P. Pavaskar, P.M. Echternach, R.E. Muller, S.B. Cronin, Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates, Nano Lett. 10 (2010) 2749-2754, http://dx.doi.org/10.1021/ nl904170g.
  15. X.Y. Zhang, J. Zhao, A.V. Whitney, J.W. Elam, R.P. Van Duyne, Ultrastable substrates for surface enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection, J. Am. Chem. Soc. 128 (2006) 10304-10309, http://dx.doi.org/10\. 1021/ja0638760.
  16. J.T. Bahns, A. Imre, V.K. Vlasko-Vlasov, J. Pearson, J.M. Hiller, L.H. Chen, U. Welp, Enhanced Raman scattering from focused surface plasmons, Appl. Phys. Lett. 91 (2007), 081104, http://dx.doi.org/10.1063/1.2759985.
  17. J.N. Anker, W.P. Hall, O. Lyandres, N.C. Shah, J. Zhao, R.P. Van Duyne, Biosensing with plasmonic nanosensors, Nat. Mater. 7 (2008) 442-453, http://dx.doi.org/10.1038/nmat2162.
  18. K.C. Grabar, R.G. Freeman, M.B. Hommer, M.J. Natan, Preparation and characterization of Au colloid monolayers, Anal. Chem. 67 (1995) 735-743, http://dx.doi.org/10.1021/ac00100a008.
  19. A. Wei, B. Kim, B. Sadtler, S.L. Tripp, Tunable surface-enhanced Raman scattering from large gold nanoparticle arrays, Chemphyschem. 12 (2001) 743-745, doi:10.1002/1439-7641(20011217)2:12<743::aid-cphc743>3.0.co;2-1.
  20. P.Z. EI-Khoury, E. Khon, Y. Gong, A.G. Joly, P. Abellan, J.E. Evans, N.D. Browning, D.Hu M. Zamkov, Electric field enhancement in a self-assembled 2D array of silver nanospheres, J. Chem. Phys. 141 (2014) 214308, http://dx. doi.org/10.1063/1.4902905.
  21. H. Chen, Z.H. Sun, W.H. Ni, K.C. Woo, H.Q. Lin, L.D. Sun, C.H. Yan, J.F. Wang, Plasmon coupling in clusters composed of two-dimensionally ordered gold nanocubes, Small. 5 (2009) 2111-2119, http://dx.doi.org/10.1002/smll. 200900256.
  22. M. Rycenga, C.M. Cobley, J. Zeng, W.Y. Li, C.H. Moran, Q. Zhang, D. Qin, Y.N. Xia, Controlling the synthesis and assembly of silver nanostructures for plasmonic applications, Chem. Rev. 111 (2011) 3669-3712, http://dx.doi.org/ 10.1021/cr100275d.
  23. J. Kumar, K.G. Thomas, Surface-enhanced Raman spectroscopy: investigations at the nanorod edges and dimer junctions, J. Phys. Chem. Lett. 2 (2011) 610-615, http://dx.doi.org/10.1021/jz2000613.
  24. L. Zhang, C. Guan, Y. Wang, J. Liao, Highly effective and uniform SERS substrates fabricated by etching multi-layered gold nanoparticle arrays, Nanoscale. 8 (2016) 5928-5937, http://dx.doi.org/10.1039/c6nr00502k.
  25. N.D. Israelsen, C. Hanson, E. Vargis, Nanoparticle properties and synthesis effects on surface-enhanced raman scattering enhancement factor: an introduction, The Scientific World Journal. (2015) 1-12, http://dx.doi.org/10\. 1155/2015/124582.
  26. S.L. Kleinman, B. Sharma, M.G. Blaber, A.I. Henry, N. Valley, R.G. Freeman, M.J. Natan, G.C. Schatz, R.P. Van Duyne, Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced raman excitation spectroscopy, J. Am. Chem. Soc. 135 (2013) 301-308, http://dx.doi. org/10.1021/ja309300d.
  27. E.C. Le Ru, J. Grand, N. Félidj, J. Aubard, G. Lévi, A. Hohenau, J.R. Krenn, E. Blackie, P.G. Etchegoin, Experimental verification of the SERS electromagnetic model beyond the E4 approximation: polarization effects, J. Phys. Chem. C Lett. 112 (2008) 8117-8121, http://dx.doi.org/10.1021/jp802219c.
  28. M. Fan, G.F.S. Andrade, A.G. Brolo, A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry, Anal. Chim. Acta 693 (2011) 7-25, http://dx.doi.org/10.1016/j.aca. 2011.03.002.
  29. S. Hong, X. Li, Optimal size of gold nanoparticles for surface-enhanced Raman spectroscopy under different conditions, J. Nanomater. (2013) 1-9, http://dx. doi.org/10.1155/2013/790323.
  30. M. Moskovits, Surface-enhanced Raman spectroscopy: a brief retrospective, J. Raman Spectrosc. 36 (2005) 485-496, http://dx.doi.org/10.1002/jrs.1362.
  31. K.G. Stamplecoskie, J.C. Scaiano, V.S. Tiwari, H. Anis, Optimal size of silver nanoparticles for surface-enhanced raman spectroscopy, J. Phys. Chem. C 115 (2011) 1403-1409, http://dx.doi.org/10.1021/jp106666t.
  32. P.N. Njoki, I.-I.S. Lim, D. Mott, et al., Size correlation of optical and spectroscopic properties for gold nanoparticles, J. Phys. Chem. C 111 (2007) 14664-14669, http://dx.doi.org/10.1021/jp074902z.
  33. S.S. Masango, R.A. Hackler, N. Large, A.I. Henry, M.O. McAnally, G.C. Schatz, P.C. Stair, R.P. Van Duyne, High-resolution distance dependence study of surface-enhanced raman scattering enabled by atomic layer deposition, Nano Lett. 16 (2016) 4251-4259, http://dx.doi.org/10.1021/acs.nanolett.6b01276.
  34. V.T.N. Linh, J. Moon, C.W. Mun, V. Devaraj, J.-W. Oh, S.-Gy. Park, D.-H. Kim, J. Choo, Y.-I. Lee, H.S. Jung, A facile low-cost paper-based SERS substrate for label-free molecular detection, Sens. Actuators B Chem. 291 (2019) 369-377, http://dx.doi.org/10.1016/j.snb.2019.04.077.
  35. A. Bonyár, I. Csarnovics, M. Veres, L. Himics, A. Csik, J. Kámán, B. Balázs, S. Kökényesi, Investigation of the performance of thermally generated gold nanoislands for LSPR and SERS applications, Sens. Actuators B Chem. 255 (2018) 433-439, http://dx.doi.org/10.1016/j.snb.2017.08.063.
  36. Y. Huang, Q. Zhou, M. Hou, L. Ma, Z. Zhang, Nanogap effects on near-and far-field plasmonic behaviors of metallic nanoparticle dimers, Phys. Chem. Chem. Phys. 17 (2015) 29293-29298, http://dx.doi.org/10.1039/c5cp04460j.
  37. Z. Skeete, H.-W. Cheng, Q.M. Ngo, Ch. Salazar, W. Sun, J. Luo, Ch-J. Zhong, Squeezed' interparticle properties for plasmonic coupling and SERS characteristics of duplex DNA conjugated/linked gold nanoparticles of homo/hetero-sizes, Nanotechnology 27 (2016) 325706, http://dx.doi.org/10\. 1088/0957-4484/27/32/325706.
  38. H. Xu, E.J. Bjerneld, J. Aizpurua, P. Apell, L. Gunnarsson, S. Petronis, B. Kasemo, Ch. Larsson, F. Hook, M. Kall, Interparticle coupling effects in surface-enhanced raman scattering Proc. SPIE 4258, Nanoparticles and Nanostructured Surfaces: Novel Reporters With Biological Applications, 4258, 2001, pp. 35-42, http://dx.doi.org/10.1117/12.430771.
  39. Z. Zhu, T. Zhu, Zh. Liu, Raman scattering enhancement contributed from individual gold nanoparticles and interparticle coupling, Nanotechnology 15 (2004) 357-364, http://dx.doi.org/10.1088/0957-4484/15/3/022.
  40. K. Nehra, S.K. Pandian, M.S.S. Bharati, V.R. Soma, Enhanced catalytic and SERS performance of shape/size controlled anisotropic gold nanostructures, New J. Chem. 43 (2019) 3835-3847, http://dx.doi.org/10.1039/C8NJ06206D.
  41. H. Yockell-Leliévre, F. Lussier, J.-F. Masson, Influence of the particle shape and density of self-assembled gold nanoparticle sensors on LSPR and SERS, J. Phys. Chem. C 119 (2015) 28577-28585, http://dx.doi.org/10.1021/acs.jpcc. 5b09570.
  42. Ch.J. Orendorff, A. Gole, T.K. Sau, C.J. Murphy, Surface-enhanced raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence, Anal. Chem. 77 (2005) 3261-3266, http://dx. doi.org/10.1021/ac048176x.
  43. NanoComposix, Tools, NanoComposix, 2014 (accessed 30 Jan 2020 http:// nanocomposix.com/pages/tools.
  44. M. Quinten, Optical Properties of Nanoparticle Systems: Mie and Beyond, Wiley-VCH, Weinheim, Germany, 2011.
  45. Y.-H. Kwon, R. Ossig, F. Hubenthal, H.-D. Kronfeldt, Influence of surface plasmon resonance wavelength on SERS activity of naturally grown silver nanoparticle ensemble, J. Raman Spectrosc. 43 (2012) 1385-1391, http://dx. doi.org/10.1002/jrs.4093.
  46. B. Sharma, R.R. Frontiera, A.-I. Henry, E. Ringe, R.P. Van Duyne, SERS: materials, applications, and the future, Mater. Today 15 (2012) 16-25, http:// dx.doi.org/10.1016/S1369-7021(12)70017-2.
  47. R. Pilot, R. Signorini, C. Durante, L. Orian, M. Bhamidipati, L. Fabris, A review on surface-enhanced raman scattering, Biosensors 9 (2019) 57, http://dx.doi. org/10.3390/bios9020057.
  48. Y. Fleger, Y. Mastai, M. Rosenbluh, D.H. Dressler, Surface enhanced Raman spectroscopy of aromatic compounds on silver nanoclusters, Surf. Sci. 603 (2009) 788-793, http://dx.doi.org/10.1016/j.susc.2009.01.020.
  49. Benzophenone datasheet in the NIST Chemistry WebBook, https://webbook. nist.gov/cgi/cbook.cgi?ID=C119619&Mask=400#UV-Vis-Spec.