Influence of Two-Stage Anodization on Properties of the Oxide Coatings on the Ti–13Nb–13Zr Alloy (original) (raw)

Surface Coating Effect on Corrosion Resistance of Titanium Alloy Bone Implants by Anodizing Method

International Journal of Technology

In the presented work, the formation of anodic oxide film on Ti-6Al-4V ELI (Extra Low Interstitial) alloy in 0.02 M trisodium phosphate (Na3PO4) electrolyte solution using various voltages were investigated. The color produced by the anodizing, the intensity of TiO2 content, the thickness of the oxide layer, and the corrosion rate were examined. It was obtained that the color appearance of Ti-6Al-4V ELI could be changed easily by altering the applied voltages. The higher the voltage applied in the anodizing process, the thicker the titanium oxide layer formed. The corrosion resistance analysis in a Simulated Body Fluid revealed that the non-anodized specimen showed a higher corrosion rate compared to the anodized specimen. The increase of oxide layer thickness leads to a significant decrease in corrosion rate and consequently increases the corrosion resistance. In addition, the anodized sample achieved the highest corrosion resistance at 15 V.

Corrosion resistance and bioactivity of titanium after surface treatment by three different methods: ion implantation, alkaline treatment and anodic oxidation

Analytical and Bioanalytical Chemistry, 2005

The paper compares the effects of various surface modifications, ion implantation, alkaline treatment and anodic oxidation, upon the corrosion resistance and bioactivity of titanium. The chemical composition of the surface layers thus produced was determined by XPS, SIMS and EDS coupled with SEM. The structure of the layers was examined by TEM, and their phase composition by XRD. The corrosion resistance was determined by electrochemical methods after the samples were exposed to the test conditions for 13 h. The bioactivity of titanium was evaluated in a simulated body fluid at a temperature of 37°C after various exposure time.

Bioactivity of coatings formed on Ti-13Nb-13Zr alloy using plasma electrolytic oxidation

Materials science & engineering. C, Materials for biological applications, 2015

In this work, we investigated the bioactivity of anodic oxide coatings on Ti-13Nb-13Zr alloy by plasma electrolytic oxidation (PEO) in solutions containing Ca and P. The bioactive properties of the films were determined by immersion in simulated body fluid (SBF), and their biocompatibility was examined using adult human bone marrow derived mesenchymal stem cells (hBMSCs). The oxide layers were characterised based on their surface morphology (SEM, AFM, profilometry) as well as on their chemical and phase compositions (EDX, XRF, XRD, XPS). We report that anodic oxidation of Ti-13Nb-13Zr led to the development of relatively thick anodic oxide films that were enriched in Ca and P in the form of phosphate compounds. Furthermore, the treatment generated rough surfaces with a significant amount of open pores. The surfaces were essentially amorphous, with small amounts of crystalline phases (anatase and rutile) being observed, depending on the PEO process parameters. SBF soaking led to the ...

Effect of double thermal and electrochemical oxidation on titanium alloys for medical applications

Applied Surface Science, 2021

The research focuses on the development and characterization of innovative thin hybrid oxide coatings obtained in subsequent processes of thermal (TO) and electrochemical (EO) oxidation. Four different surface modifications were investigated and the microstructure was determined, the mechanical, chemical and biological properties of the Ti-13Nb-13Zr alloy were assessed using scanning electron microscopy, X-ray dispersion analysis, glow discharge emission spectroscopy, Raman spectroscopy, nanoindentation and corrosion resistance measurements. The composite layers were evaluated for antimicrobial activity, cytotoxicity bioassays and wettability tests were performed. The conducted studies of two-stage oxidation (TO + EO) have shown that it is possible to obtain layers with a different structure-crystalline and nanotubular. The formation of a nanotube layer on the surface of the crystalline layer is dependent on the thickness of the crystalline layer. The produced double titanium oxide coatings show high surface roughness, high corrosion resistance, are hydrophilic, slightly antibacterial, and not cytotoxic, which has a huge impact on the process of connecting the tissue with the implant.

In Vitro Corrosion and Bioactivity Performance of Surface-Treated Ti-20Nb-13Zr Alloys for Orthopedic Applications

Coatings, 2019

The influence of surface treatments on the microstructure, in vitro bioactivity and corrosion protection performance of newly fabricated Ti-20Nb-13Zr (TNZ) alloys was evaluated in simulated body fluid (SBF). The TNZ alloy specimens were treated with separate aqueous solutions of NaOH and H2O2 and with a mixture of both, followed by thermal treatment. The nanoporous network surface structure observed in H2O2-treated and alkali-treated specimens was entirely different from the rod-like morphology observed in alkali hydrogen peroxide-treated specimens. XRD results revealed the formation of TiO2 and sodium titanate layers on the TNZ specimens during surface treatments. The water contact angle results implied that the surface-treated specimens exhibited improved surface hydrophilicity, which probably improved the bioactivity of the TNZ specimens. The in vitro corrosion protection performance of the surface-treated TNZ specimens was analyzed using electrochemical corrosion testing in SBF,...

Anodic oxidation of titanium for implants and prosthesis: processing, characterization and potential improvement of osteointegration

IFMBE Proceedings, 2013

Among all biomaterials used for bone replacement, it is recognized that both commercially pure titanium (Ti c.p.) and Ti 6 Al 4 V alloy are the materials that show the best in vivo performance due to their excellent balance between mechanical, physical-chemical and biofunctional properties. However, one of its main drawbacks, which compromise the service reliability of the implants and its osteointegration capacity, is the thin film of fibrous tissue around the implant due to the bioinert behaviour of titanium. One of the alternatives more studied to improve the titanium osteointegration is the surface modification through the control of the roughness parameters within a specific range which is recognized that improve the osteoblasts adhesion. In this work is investigated the influence of different electrochemical processing conditions for surface modification of c.p. Ti, in their microstructural, morphological, topographical and mechanical properties, as well as in their biological behaviour. The electrochemical anodizing treatment was performed by using different electrolytes based on phosphoric acid (H 3 PO 4), sulphuric acid (H 2 SO 4) with a fluoride salt; and the Focused Ion Beam (FIB) technique, normally named as Nanolab, was used for the microstructural, chemical and morphological characterization, as well as the confocal laser microscopy technique which also served for roughness measurements. The mechanical response of the anodic layers was evaluated through the using of a scratch tester which showed the critical loads for the coating damages. The characterization results showed that both, concentrations and electrolyte species, clearly influenced the morphological and topographical features, as well as the chemical composition of the anodic layer. By using the FIB was possible to detect nanopores within both the surface and the bulk of the coating. Some of the conditions generated a very special coating morphology which promoted a better osteoblasts adhesion. Contrary to what it was a priory expected, all anodic coatings showed high critical loads for damages during scratch test, despite their high porosity, which could be related with some defects coalescence mechanism that allows dissipating the high stress concentration applied during the test.

Micro-Photographic Analysis of Titanium Anodization to Assess Bio-activation

Today surface modifications of titanium implants have become a development strategy of dental implants. The present study investigated the morphology (SEM), surface elemental analysis (EDX), surface roughness (AFM) and crystalline structure (XRD) of TiO2 film prepared via anodic oxidation of grade II commercially pure titanium specimens in different electrolytic solutions and times. Incubation of anodized specimens into simulated body fluids for 7 days showed that a layer containing calcium (Ca) and phosphorus (P) was precipitated on the titanium surface. This was detected by scanning electron microscope (SEM) and energy dispersive X-ray analysis (EDX), the atomic Ca/P ration was calculated and compared to the hydroxyapatite ratio 1.67. The oxide film observed on specimens, who did not experience dielectric breakdown experienced little morphological, surface areas and roughness changes. When sulfuric acid and sodium sulfate solution were used as electrolyte, the anodized specimens e...

Corrosion behaviour of biomedical β-titanium alloys with the surface-modified by chemical etching and electrochemical methods

Corrosion Science, 2021

HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Distributed under a Creative Commons Attribution-NonCommercial| 4.0 International License

Electrochemical and biological characterization of coatings formed on Ti–15Mo alloy by plasma electrolytic oxidation

Materials Science and Engineering: C, 2014

β-type titanium alloys are considered the future materials for bone implants. To improve the bioactivity of Ti-15Mo, the surface was modified using the plasma electrolytic oxidation (PEO) process. Tricalcium phosphate (TCP, Ca 3 PO 4 ), wollastonite (CaSiO 3 ) and silica (SiO 2 ) were selected as additives in the anodizing bath to enhance the bioactivity of the coatings formed during the PEO process. Electrochemical analysis of the samples was performed in Ringer's solution at 37 °C. The open-circuit potential (E OCP ) as a function of time, corrosion potential (E CORR), corrosion current density (j CORR ) and polarization resistance (R p ) of the samples were determined. Surface modification improved the corrosion resistance of Ti-15Mo in Ringer's solution. In vitro studies with MG-63 osteoblast-like cells were performed for 1, 3 and 7 days. After 24 h, the cells were well adhered on the entire surfaces, and their number increased with increasing culture time. The coatings formed in basic solution with wollastonite exhibited better biological performance compared with the asground sample.