LayBack: SDN Management of Multi-Access Edge Computing (MEC) for Network Access Services and Radio Resource Sharing (original) (raw)
Related papers
SDN Enhanced Multi-Access Edge Computing (MEC) for E2E Mobility and QoS Management
IEEE Access
Multi-access Edge Computing (MEC) is a key enabler of the fifth-generation (5G) mobile cellular networks. MEC enables Ultra-reliable and Low-latency Communications (URLLC) by bringing the data and computational resources closer to the mobile users. As 5G deployments commence in earnest, researchers have turned their attention to various aspects of edge computing in an effort to leverage the new capabilities offered by 5G. In this paper, we propose the integration of Software Defined Networking (SDN) and cloud-native virtualization techniques, such as containers, with the MEC architecture, to facilitate the orchestration and management of Mobile Edge Hosts (MEH). The proposed architecture focuses on the end-to-end mobility support required to maintain service continuity when mobile users relocate from one MEH to another. SDN is proposed as a reliable, programmatic paradigm to provide mobile edge orchestration and dynamic configuration of the underlying network for improved service continuity and quality of experience. The proposed architecture is validated through vehicle-to-everything simulations that highlight the advantage of the centralized network intelligence and the modularity and portability offered by SDN and containers.
IEEE Access
Fifth-Generation (5G) mobile cellular networks provide a promising platform for new, innovative and diverse IoT applications, such as ultra-reliable and low latency communication, real-time and dynamic data processing, intensive computation, and massive device connectivity. End-to-End (E2E) network slicing candidates present a promising approach to resource allocation and distribution that permit operators to flexibly provide scalable virtualized and dedicated logical networks over common physical infrastructure. Though network slicing promises the provision of services on demand, many of its use cases, such as self-driving cars and Google's Stadia, would require the integration of a Multi-Access Edge Computing (MEC) platform in 5G networks. Edge Computing is envisioned as one of the key drivers for 5G and Sixth-Generation (6G) mobile cellular networks, but its role in network slicing remains to be fully explored. We investigate MEC and network slicing for the provision of 5G service focused use cases. Recently, changes to the cloud-native 5G core are a focus with MEC use cases providing network scalability, elasticity, flexibility, and automation. A cloud-native microservices architecture, along with its potential use cases for 5G network slicing, is envisioned. This paper also elaborates on the recent advances made in enabling E2E network slicing, its enabling technologies, solutions, and current standardization efforts. Finally, this paper identifies open research issues and challenges and provides possible solutions and recommendations. INDEX TERMS Network slicing, software defined networking, multi-access edge computing, cloud native, ultra-reliable, and low latency communication.
Architecture Harmonization Between Cloud Radio Access Networks and Fog Networks
IEEE Access, 2015
To guarantee the ubiquitous and fully autonomous Internet connections in our daily life, the new technical challenges of mobile communications lie on the efficient utilization of resource and social information. To facilitate the innovation of the fifth generation (5G) networks, the cloud radio access network (RAN) and fog network have been proposed to respond newly emerging traffic demands. The cloud RAN functions more toward centralized resource management to achieve optimal transmissions. The fog network takes advantage of social information and edge computing to efficiently alleviate the end-toend latency. In this paper, we conduct a comprehensive survey of these two network structures, and then investigate possible harmonization to integrate both for the diverse needs of 5G mobile communications. We analytically study the harmonization of cloud RAN and fog network from various points of view, including the cache of Internet contents, mobility management, and radio access control. The performance of transition between the cloud RAN and the fog network has been presented and the subsequent switching strategy has been proposed to ensure engineering flexibility and success. INDEX TERMS 5G, fog network, cloud radio access network, RAN, heterogeneous network, edge computing, cloud computing, cache, radio resource management, mobility, mobile communications, vehicular network.
Five Driving Forces of Multi-Access Edge Computing
ArXiv, 2018
The emergence of Multi-Access Edge Computing (MEC) technology aims at extending cloud computing capabilities to the edge of the wireless access networks. MEC provides real-time, high-bandwidth, low-latency access to radio network resources, allowing operators to open their networks to a new ecosystem and value chain. Moreover, it will provide a new insight to the design of future 5th Generation (5G) wireless systems. This paper describes five key technologies, including Network Function Vitalization (NFV), Software Defined Networking (SDN), Network Slicing, Information Centric Networking (ICN) and Internet of Things (IoT), that intensify the widespread of MEC and its adoption. Our goal is to provide the associativity between MEC and these five driving technologies in 5G context while identifying the open challenges, future directions, and tangible integration paths.
QoE-Oriented Mobile Edge Service Management Leveraging SDN and NFV
Mobile Information Systems
5G envisages a “hyperconnected society” where trillions of diverse entities could communicate with each other anywhere and at any time, some of which will demand extremely challenging performance requirements such as submillisecond low latency. Mobile Edge Computing (MEC) concept where application computing resources are deployed at the edge of the mobile network in proximity of an end user is a promising solution to improve quality of online experience. To make MEC more flexible and cost-effective Network Functions Virtualisation (NFV) and Software-Defined Networking (SDN) technologies are widely adopted. It leads to significant CAPEX and OPEX reduction with the help of a joint radio-cloud management and orchestration logic. In this paper we discuss and develop a reference architecture for the orchestration and management of the MEC ecosystem. Along with the lifecycle management flows of MEC services, indicating the interactions among the functional modules inside the Orchestrator ...
IEEE Access, 2017
Wireless network virtualization (WNV) has drawn attention from the researchers ranging from academia to industry as one of the significant technologies in the cellular network communication. It is considered as a pioneer to achieve effective resource utilization with decreased operating expenses (OPEX) and capital expenses (CAPEX) by decoupling the networks functionalities of coexisting virtual networks (VNs). It facilitates fast deployment of new services and novel technologies. WNV paradigm is in the early stages, and there is a large room for the research community to develop new architectures, systems, and applications. The availability of Software-defined networking (SDN) and cloud/centralized radio access network (C-RAN) steers up the hope for the WNV realization. This paper surveys WNV along with the recent developments in SDN and C-RAN technologies. Based on these technologies and WNV concepts, we identify the requirements and opportunities of future cellular networks. We then propose a general architectural framework for the WNV based on SDN. In-depth discussion of challenges and research issues as well as promising approaches for future networks communication improvements are also proposed. Finally, we give several promising candidates of future network services for residential customers and business customers.
CN2F: A Cloud-Native Cellular Network Framework
arXiv (Cornell University), 2023
Upcoming 5G and Beyond 5G (B5G) cellular networks aim to improve the efficiency and flexibility of mobile networks by incorporating various technologies, such as Software Defined Networking (SDN), Network Function Virtualization (NFV), and Network Slicing (NS). In this paper, we share our findings, accompanied by a comprehensive online codebase, about the best practice of using different open-source projects in order to realize a flexible testbed for academia and industrial Research and Development (R&D) activities on the future generation of cellular networks. In particular, a "Cloud-Native Cellular Network Framework (CN 2 F)" is presented which uses OpenAirInterface's codebase to generate cellular Virtual Network Functions (VNFs) and deploys Kubernetes to disperse and manage them among some worker nodes. Moreover, CN 2 F leverages ONOS and Mininet to emulate the effect of the IP transport networks in the fronthaul and backhaul of real cellular networks. In this paper, we also showcase two use cases of CN 2 F to demonstrate the importance of Edge Computing (EC) and the capability of Radio Access Network (RAN) slicing.
IEEE Communications Surveys & Tutorials, 2017
Multi-access edge computing (MEC) is an emerging ecosystem, which aims at converging telecommunication and IT services, providing a cloud computing platform at the edge of the radio access network. MEC offers storage and computational resources at the edge, reducing latency for mobile end users and utilizing more efficiently the mobile backhaul and core networks. This paper introduces a survey on MEC and focuses on the fundamental key enabling technologies. It elaborates MEC orchestration considering both individual services and a network of MEC platforms supporting mobility, bringing light into the different orchestration deployment options. In addition, this paper analyzes the MEC reference architecture and main deployment scenarios, which offer multitenancy support for application developers, content providers, and third parties. Finally, this paper overviews the current standardization activities and elaborates further on open research challenges.
The fifth generation (5G) cellular infrastructure is envisaged as a dense and heterogeneous deployment of small cells overlapping with existing macrocells in the Radio Access Network (RAN). Densification and heterogeneity, however, pose new challenges such as dealing with interference, accommodating massive signaling traffic, and managing increased energy consumption. Heterogeneous Cloud Radio Access Networks (H-CRAN) emerges as a candidate architecture for a sustainable deployment of 5G. In addition, the application of SDN concepts to wireless environments motivated recent research in the so-called Software-Defined Wireless Networking (SDWN). In this article, we discuss how SDWN can support the development of a flexible, programmable, and sustainable infrastructure for 5G. We also present a case study based on SDWN to perform frequency assignment, interference, and handover control in an H-CRAN environment. Results allow the establishment of a tradeoff between wireless communication capacity gains and signaling overhead added by the employment of SDWN concepts to H-CRAN.
5G-EmPOWER: A Software-Defined Networking Platform for 5G Radio Access Networks
IEEE Transactions on Network and Service Management, 2019
Software-Defined Networking (SDN) is making their way into the fifth generation of mobile communications. For example, 3GPP is embracing the concept of Control-User Plane Separation (a cornerstone concept in SDN) in the 5G core and the Radio Access Network (RAN). In this paper we introduce a flexible, programmable, and open-source SDN platform for heterogeneous 5G RANs. The platform builds on an open protocol that abstracts the technology-dependent aspects of the radio access elements, allowing network programmers to deploy complex management tasks as policies on top of a programmable logically centralized controller. We implement the proposed solution as an extension to the 5G-EmPOWER platform and release the software stack (including the southbound protocol) under a permissive APACHE 2.0 License. Finally, the effectiveness of the platform is assessed through three reference use cases: active network slicing, mobility management, and load-balancing.