A Role for Acp29AB, a Predicted Seminal Fluid Lectin, in Female Sperm Storage in Drosophila melanogaster (original) (raw)

Mated Drosophila melanogaster Females Require a Seminal Fluid Protein, Acp36DE, to Store Sperm Efficiently

Genetics, 1999

Mated females of many animal species store sperm. Sperm storage profoundly influences the number, timing, and paternity of the female’s progeny. To investigate mechanisms for sperm storage in Drosophila melanogaster, we generated and analyzed mutations in Acp36DE. Acp36DE is a male seminal fluid protein whose localization in mated females suggested a role in sperm storage. We report that male-derived Acp36DE is essential for efficient sperm storage by females. Acp36DE1 (null) mutant males produced and transferred normal amounts of sperm and seminal fluid proteins. However, mates of Acp36DE1 males stored only 15% as many sperm and produced 10% as many adult progeny as control-mated females. Moreover, without Acp36DE, mated females failed to maintain an elevated egg-laying rate and decreased receptivity, behaviors whose persistence (but not initiation) normally depends on the presence of stored sperm. Previous studies suggested that a barrier in the oviduct confines sperm and Acp36DE ...

Seminal proteins but not sperm induce morphological changes in the Drosophila melanogaster female reproductive tract during sperm storage

Journal of Insect Physiology, 2007

In most insects, sperm transferred by the male to the female during mating are stored within the female reproductive tract for subsequent use in fertilization. In Drosophila melanogaster, male accessory gland proteins (Acps) within the seminal fluid are required for efficient transfer and subsequent accumulation of sperm in the female's sperm storage organs. To determine the events within the female reproductive tract that occur during sperm storage, and the role that Acps and sperm play in these events, we identified morphological changes that take place during sperm storage in females mated to wild-type, Acp-deficient or sperm-deficient males. A reproducible set of morphological changes occurs in a wild-type mating. These were categorized into 10 stereotypic stages. Sperm are not needed for progression through these stages in females, but receipt of Acps is essential for progression beyond the first few stages of morphological changes. Furthermore, females that received small quantities of Acps reached slightly later stages than females that received no Acps. Our results suggest that timely morphological changes in the female reproductive tract, possibly muscular in nature, may be needed for successful sperm storage, and that Acps from the male are needed in order for these changes to occur.

Seminal influences: Drosophila Acps and the molecular interplay between males and females during reproduction

Integrative and Comparative Biology, 2007

Successful reproduction requires contributions from both the male and the female. In Drosophila, contributions from the male include accessory gland proteins (Acps) that are components of the seminal fluid. Upon their transfer to the female, Acps affect the female's physiology and behavior. Although primary sequences of Acp genes exhibit variation among species and genera, the conservation of protein biochemical classes in the seminal fluid suggests a conservation of functions. Bioinformatics coupled with molecular and genetic tools available for Drosophila melanogaster has expanded the functional analysis of Acps in recent years to the genomic/proteomic scale. Molecular interplay between Acps and the female enhances her egg production, reduces her receptivity to remating, alters her immune response and feeding behavior, facilitates storage and utilization of sperm in the female and affects her longevity. Here, we provide an overview of the D. melanogaster Acps and integrate the...

An early role for theDrosophila melanogastermale seminal protein Acp36DE in female sperm storage

Journal of Experimental Biology, 2003

SUMMARYFemale sperm storage is an essential component of reproduction in many animals. In insects, female sperm storage affects fecundity, sperm competition/preference and receptivity to re-mating. Female sperm storage consists of several stages, including sperm entry into the sperm storage organs (SSOs), maintenance within the SSOs and exit from the SSOs. The Drosophila melanogaster male seminal protein Acp36DE is essential for female sperm storage. Acp36DE associates with sperm and localizes to specific regions of the female reproductive tract, including the SSOs. We determined the stage of sperm storage at which Acp36DE acts by comparing the timing of initial sperm entry into storage as well as the rates of sperm accumulation and release from the SSOs in the presence or absence of Acp36DE. Acp36DE accelerates sperm accumulation into storage but does not mediate the entry of the first sperm into storage. This finding also demonstrates that the initial stage of sperm storage consis...

The gifts that keep on giving: physiological functions and evolutionary dynamics of male seminal proteins in Drosophila

Heredity, 2002

During mating, males transfer seminal proteins and peptides, along with sperm, to their mates. In Drosophila melanogaster, seminal proteins made in the male's accessory gland stimulate females' egg production and ovulation, reduce their receptivity to mating, mediate sperm storage, cause part of the survival cost of mating to females, and may protect reproductive tracts or gametes from microbial attack. The physiological functions of these proteins indicate that males provide their mates with molecules that initiate important reproductive responses in females. A new comprehensive EST screen, in conjunction with earlier screens, has identified ෂ90% of the predicted secreted accessory gland proteins (Acps). Most Acps are novel proteins and many appear to be secreted peptides or prohormones. Acps also include modification enzymes such as proteases and

Sustained Post-Mating Response in Drosophila melanogaster Requires Multiple Seminal Fluid Proteins

PLoS Genetics, 2005

Successful reproduction is critical to pass genes to the next generation. Seminal proteins contribute to important reproductive processes that lead to fertilization in species ranging from insects to mammals. In Drosophila, the male's accessory gland is a source of seminal fluid proteins that affect the reproductive output of males and females by altering female post-mating behavior and physiology. Protein classes found in the seminal fluid of Drosophila are similar to those of other organisms, including mammals. By using RNA interference (RNAi) to knock down levels of individual accessory gland proteins (Acps), we investigated the role of 25 Acps in mediating three post-mating female responses: egg production, receptivity to remating and storage of sperm. We detected roles for five Acps in these postmating responses. CG33943 is required for full stimulation of egg production on the first day after mating. Four other Acps (CG1652, CG1656, CG17575, and CG9997) appear to modulate the long-term response, which is the maintenance of post-mating behavior and physiological changes. The long-term post-mating response requires presence of sperm in storage and, until now, had been known to require only a single Acp. Here, we discovered several novel Acps together are required which together are required for sustained egg production, reduction in receptivity to remating of the mated female and for promotion of stored sperm release from the seminal receptacle. Our results also show that members of conserved protein classes found in seminal plasma from insects to mammals are essential for important reproductive processes.

Cleavage of the Drosophila seminal protein Acp36DE in mated females enhances its sperm storage activity

Journal of Insect Physiology, 2017

Sperm storage in the mated female reproductive tract (RT) is required for optimal fertility in numerous species with internal fertilization. In Drosophila melanogaster, sperm storage is dependent on female receipt of seminal fluid proteins (SFPs) during mating. The seminal fluid protein Acp36DE is necessary for the accumulation of sperm into storage. In the female RT, Acp36DE localizes to the anterior mating plug and also to a site in the common oviduct, potentially "corralling" sperm near the entry sites into the storage organs. Genetic studies showed that Acp36DE is also required for a series of conformational changes of the uterus that begin at the onset of mating and are hypothesized to move sperm towards the entry sites of the sperm storage organs. After Acp36DE is transferred to the female RT, the protein is cleaved by the astacinmetalloprotease Semp1. However, the effect of this cleavage on Acp36DE's function in sperm accumulation into storage is unknown. We used mass spectrometry to identify the single cleavage site in Acp36DE. We then mutated this site and tested the effects on sperm storage. Mutations of Acp36DE's cleavage site that slowed or prevented cleavage of the protein slowed the accumulation of sperm into storage, although they did not affect uterine conformational changes in mated females. Moreover, the N-terminal cleavage product of Acp36DE was sufficient to mediate sperm accumulation in storage, and it did so faster than versions of Acp36DE that could not be cleaved or were only cleaved slowly. These results suggest that cleavage of Acp36E may increase the number of bioactive molecules within the female RT, a mechanism similar to that hypothesized for Semp1's other substrate, the seminal fluid protein ovulin.

A network of interactions among seminal proteins underlies the long-term postmating response in Drosophila

Proceedings of the National Academy of Sciences, 2009

Despite the importance of seminal proteins in fertility and their capacity to alter mated females' physiology, the molecular pathways and networks through which they act have not been well characterized. Drosophila seminal fluid includes proteins that fall into biochemical classes conserved from insects to mammals, making it an excellent model with which to address this question. Drosophila seminal fluid also contains a “sex peptide” (SP, Acp70A) that plays a major role in regulating egg production and mating behavior in females for several days after mating. This long-term postmating response (LTR) initially requires the association of SP with sperm. The LTR also requires members of the conserved seminal protein classes (two lectins, a protease, and a cysteine-rich secretory protein). Here, we show that these seminal proteins function interdependently, regulating a three-step cascade (first, at the level of seminal protein transfer to the female; second, at the level of stabili...

Sperm of the wasted mutant are wasted when females utilize the stored sperm in Drosophila melanogaster

Genes & Genetic Systems, 2011

Females of many animal species store sperm after copulation for use in fertilization, but the mechanisms controlling sperm storage and utilization are largely unknown. Here we describe a novel male sterile mutation of Drosophila melanogaster, wasted (wst), which shows defects in various processes of sperm utilization. The sperm of wst mutant males are stored like those of wild-type males in the female sperm storage organs, the spermathecae and seminal receptacles, after copulation and are released at each ovulation. However, an average of thirteen times more wst sperm than wild type sperm are released at each ovulation, resulting in rapid loss of sperm stored in seminal receptacles within a few days after copulation. wst sperm can enter eggs efficiently at 5 hr after copulation, but the efficiency of sperm entry decreases significantly by 24 hr after copulation, suggesting that wst sperm lose their ability to enter eggs during storage. Furthermore, wst sperm fail to undergo nuclear decondensation, which prevents the process of fertilization even when sperm enter eggs. Our results indicate that the wst gene is essential for independent processes in the utilization of stored sperm; namely, regulation of sperm release from female storage organs, maintenance of sperm efficiency for entry into eggs, and formation of the male pronucleus in the egg at fertilization.

Seminal fluid gene expression and reproductive fitness in Drosophila melanogaster

BMC Ecology and Evolution, 2022

Background The rapid evolution of seminal fluid proteins (SFPs) has been suggested to be driven by adaptations to postcopulatory sexual selection (e.g. sperm competition). However, we have recently shown that most SFPs evolve rapidly under relaxed selective pressures. Given the role of SFPs in competition for fertilization phenotypes, like the ability to transfer and store sperm and the modulation of female receptivity and ovulation, the prevalence of selectively relaxed SFPs appears as a conundrum. One possible explanation is that selection on SFPs might be relaxed in terms of protein amino acid content, but adjustments of expression are essential for post-mating function. Interestingly, there is a general lack of systematic implementation of gene expression perturbation assays to monitor their effect on phenotypes related to sperm competition. Results We successfully manipulated the expression of 16 SFP encoding genes using tissue-specific knockdowns (KDs) and determined the effec...