Contrasted evolutionary constraints on carbohydrate active enzymes (CAZymes) in selected Frankia strains (original) (raw)
Related papers
Comparative analysis of plant carbohydrate active enZymes and their role in xylogenesis
BMC genomics, 2015
Carbohydrate metabolism is a key feature of vascular plant architecture, and is of particular importance in large woody species, where lignocellulosic biomass is responsible for bearing the bulk of the stem and crown. Since Carbohydrate Active enZymes (CAZymes) in plants are responsible for the synthesis, modification and degradation of carbohydrate biopolymers, the differences in gene copy number and regulation between woody and herbaceous species have been highlighted previously. There are still many unanswered questions about the role of CAZymes in land plant evolution and the formation of wood, a strong carbohydrate sink. Here, twenty-two publically available plant genomes were used to characterize the frequency, diversity and complexity of CAZymes in plants. We find that a conserved suite of CAZymes is a feature of land plant evolution, with similar diversity and complexity regardless of growth habit and form. In addition, we compared the diversity and levels of CAZyme gene exp...
Comparative secretome analysis suggests low plant cell wall degrading capacity in Frankia symbionts
BMC Genomics, 2008
Background Frankia sp. strains, the nitrogen-fixing facultative endosymbionts of actinorhizal plants, have long been proposed to secrete hydrolytic enzymes such as cellulases, pectinases, and proteases that may contribute to plant root penetration and formation of symbiotic root nodules. These or other secreted proteins might logically be involved in the as yet unknown molecular interactions between Frankia and their host plants. We compared the genome-based secretomes of three Frankia strains representing diverse host specificities. Signal peptide detection algorithms were used to predict the individual secretomes of each strain, and the set of secreted proteins shared among the strains, termed the core Frankia secretome. Proteins in the core secretome may be involved in the actinorhizal symbiosis. Results The Frankia genomes have conserved Sec (general secretory) and Tat (twin arginine translocase) secretion systems. The potential secretome of each Frankia strain comprised 4–5% of...
Frontiers in microbiology, 2018
The efficiency with which the anaerobic fungi (phylum Neocallimastigomycota) degrade plant biomass is well-recognized and in recent years has received renewed interest. To further understand the biological mechanisms that are utilized by the rumen anaerobic fungi to break down lignocellulose, we have used a transcriptomic approach to examine carbohydrate digestion by cultured on several carbon sources. The number of predicted unique transcripts ranged from 6,633 to 12,751. Pfam domains were identified in 62-70% of the fungal proteins and were linked to gene ontology terms to infer the biological function of the transcripts. Most of the predicted functions are consistent across species suggesting a similar overall strategy evolved for successful colonization of the rumen. However, the presence of differential profiles in enzyme classes suggests that there may be also be niche specialization. All fungal species were found to express an extensive array of transcripts encoding carbohydr...
Carbohydrate-active enzymes (CAZymes) are involved in the metabolism of glycoconjugates, oligosaccharides, and polysaccharides and, in the case of plant pathogens, in the degradation of the host cell wall and storage compounds. We performed an in silico analysis of CAZymes predicted from the genomes of seven Pythium species (Py. aphanidermatum, Py. arrhenomanes, Py. irregulare, Py. iwayamai, Py. ultimum var. ultimum, Py. ultimum var. sporangiiferum and Py. vexans) using the ''CAZymes Analysis Toolkit'' and ''Database for Automated Carbohydrate-active Enzyme Annotation'' and compared them to previously published oomycete genomes. Growth of Pythium spp. was assessed in a minimal medium containing selected carbon sources that are usually present in plants. The in silico analyses, coupled with our in vitro growth assays, suggest that most of the predicted CAZymes are involved in the metabolism of the oomycete cell wall with starch and sucrose serving as the main carbohydrate sources for growth of these plant pathogens. The genomes of Pythium spp. also encode pectinases and cellulases that facilitate degradation of the plant cell wall and are important in hyphal penetration; however, the species examined in this study lack the requisite genes for the complete saccharification of these carbohydrates for use as a carbon source. Genes encoding for xylan, xyloglucan, (galacto)(gluco)mannan and cutin degradation were absent or infrequent in Pythium spp.. Comparative analyses of predicted CAZymes in oomycetes indicated distinct evolutionary histories. Furthermore, CAZyme gene families among Pythium spp. were not uniformly distributed in the genomes, suggesting independent gene loss events, reflective of the polyphyletic relationships among some of the species.
Distribution and diversity of enzymes for polysaccharide degradation in fungi (R. Berlemont*)
Background: Glycoside hydrolases (GH) targeting cellulose, xylan, and chitin are common in the bacterial genomes that have been sequenced. Little is known, however, about the architecture of multi-domain and multi-activity glyco-side hydrolases. In these enzymes, combined catalytic domains act synergistically and thus display overall improved catalytic efficiency, making these proteins of high interest for the biofuel technology industry. Results: Here, we identify the domain organization in 40,946 proteins targeting cellulose, xylan, and chitin derived from 11,953 sequenced bacterial genomes. These bacteria are known to be capable, or to have the potential, to degrade polysaccharides, or are newly identified potential degraders (e.g., Actinospica, Hamadaea, Cystobacter, and Microbispora). Most of the proteins we identified contain a single catalytic domain that is frequently associated with an accessory non-catalytic domain. Regarding multi-domain proteins, we found that many bacterial strains have unique GH protein architectures and that the overall protein organization is not conserved across most genera. We identified 217 multi-activity proteins with at least two GH domains for cellulose, xylan, and chitin. Of these proteins, 211 have GH domains targeting similar or associated substrates (i.e., cellulose and xylan), whereas only six proteins target both cellulose and chitin. Fifty-two percent of multi-activity GHs are hetero-GHs. Finally, GH6, −10, −44 and −48 domains were mostly C-terminal; GH9, −11, −12, and −18 were mostly N-terminal; and GH5 domains were either Nor C-terminal. Conclusion: We identified 40,946 multi-domain/multi-activity proteins targeting cellulase, chitinase, and xylanase in bacterial genomes and proposed new candidate lineages and protein architectures for carbohydrate processing that may play a role in biofuel production.
Distribution and diversity of enzymes for polysaccharide degradation in fungi OPEN
Fungi are important polysaccharide degraders in the environment and for biotechnology. Here, the increasing number of sequenced fungal genomes allowed for systematic identification of genes and proteins involved in polysaccharide degradation in 218 fungi. Globally, 9,003 sequences for glycoside hydrolases and lytic polysaccharide mono-oxygenases targeting cellulose, xylan, and chitin, were identified. Although abundant in most lineages, the distribution of these enzymes is variable even between organisms from the same genus. However, most fungi are generalists possessing several enzymes for polysaccharide deconstruction. Most identified enzymes were small proteins with simple domain organization or eventually consisted of one catalytic domain associated with a non-catalytic accessory domain. Thus unlike bacteria, fungi's ability to degrade polysaccharides relies on apparent redundancy in functional traits and the high frequency of lytic polysaccharide mono-oxygenases, as well as other physiological adaptation such as hyphal growth. Globally, this study provides a comprehensive framework to further identify enzymes for polysaccharide deconstruction in fungal genomes and will help identify new strains and enzymes with potential for biotechnological application. Glycoside hydrolases (GHs) and lytic polysaccharide mono-oxygenases (LPMOs) with other carbohydrate active enzymes (e.g., polysaccharide lyases), are essential for the processing of polysaccharides 1. Among the many identified polysaccharides, cellulose and xylan from plants represent the major source of carbon in land ecosystems. Chitin, produced by arthropods and fungi, is an important source of carbon and nitrogen in both marine and land ecosystems. The enzymatic degradation of these polysaccharides is essential for many ecosystem-processes including nutrient cycling (e.g., carbon cycling) 2 and herbivores nutrition 3. In order to degrade polysaccharides, many enzymes with synergistic action are required. For example GHs with an endo-mode of action (e.g., endo-cellulase) and GHs active on extremities (e.g., exo-cellulase) act syner-gistically to release short oligosaccharides. Finally some GHs are involved in the processing of these shorter degradation products (e.g., β-glucosidase). In consequence, most identified polysaccharide degraders are equipped with several GH families 1, 4, 5. Often, polysaccharides associate and form complex superstructures (e.g., cellulose and xylan in plant cell walls); the deconstruction of these complex structure requires further synergy between enzymes targeting chemically distinct but physically associated substrates. Hence, many degraders often target several substrates (e.g., cellulose and xylan) 5, 6. In the environment, the hydrolysis of cellulose, xylan, and chitin is mostly supported by bacteria and fungi. Several strategies have been described: the production of (i) individual enzymes, sometimes associated with non-catalytic accessory domains (i.e., multidomain GHs) 7, 8 , (ii) the production of multiactivity GHs with several catalytic domains associated; and (iii) the synthesis of non-covalent multi-protein complexes called cellulosomes 9, 10. Multidomain/activity GHs, and cellulosomes are promising tools for improving the deconstruction of biopol-ymers and biofuel industries 9, 11–13. Beside GHs, CAZymes include some proteins with " auxiliary activities " (AAs), among others. The proteins are involved in lignin deconstruction and oxidative degradation of cellulose and chitin (i.e., lytic polysaccharide mono-oxygenases, LPMOs) 1. Proteins from AA family 9 and 10 are LPMOs, previously classified as GH family 61 and CBM33, respectively. According to CAZy DB 1 , AA family 9 is exclusively observed in eukaryote whereas AA family 10 is found mostly in bacteria. Finally, AA13 is the third family of enzyme with LPMO activity and contains only a few identified sequences.
Fungal enzyme sets for plant polysaccharide degradation
Applied Microbiology and Biotechnology, 2011
Enzymatic degradation of plant polysaccharides has many industrial applications, such as within the paper, food, and feed industry and for sustainable production of fuels and chemicals. Cellulose, hemicelluloses, and pectins are the main components of plant cell wall polysaccharides. These polysaccharides are often tightly packed, contain many different sugar residues, and are branched with a diversity of structures. To enable efficient degradation of these polysaccharides, fungi produce an extensive set of carbohydrate-active enzymes. The variety of the enzyme set differs between fungi and often corresponds to the requirements of its habitat. Carbohydrate-active enzymes can be organized in different families based on the amino acid sequence of the structurally related catalytic modules. Fungal enzymes involved in plant polysaccharide degradation are assigned to at least 35 glycoside hydrolase families, three carbohydrate esterase families and six polysaccharide lyase families. This mini-review will discuss the enzymes needed for complete degradation of plant polysaccharides and will give an overview of the latest developments concerning fungal carbohydrate-active enzymes and their corresponding families.
Genomic Insights Into Plant-Growth-Promoting Potentialities of the Genus Frankia
Frontiers in Microbiology
This study was designed to determine the plant growth promoting (PGP) potential of members of the genus Frankia. To this end, the genomes of 21 representative strains were examined for genes associated directly or indirectly with plant growth. All of the Frankia genomes contained genes that encoded for products associated with the biosynthesis of auxins [indole-3-glycerol phosphate synthases, anthranilate phosphoribosyltransferases (trpD), anthranilate synthases, and aminases (trpA and B)], cytokinins (11 well-conserved genes within the predicted biosynthetic gene cluster), siderophores, and nitrogenases (nif operon except for atypical Frankia) as well as genes that modulate the effects of biotic and abiotic environmental stress (e.g., alkyl hydroperoxide reductases, aquaporin Z, heat shock proteins). In contrast, other genes were associated with strains assigned to one or more of four host-specific clusters. The genes encoding for phosphate solubilization (e.g., low-affinity inorganic phosphate transporters) and lytic enzymes (e.g., cellulases) were found in Frankia cluster 1 genomes, while other genes were found only in cluster 3 genomes (e.g., alkaline phosphatases, extracellular endoglucanases, pectate lyases) or cluster 4 and subcluster 1c genomes (e.g., NAD(P) transhydrogenase genes). Genes encoding for chitinases were found only in the genomes of the type strains of Frankia casuarinae, F. inefficax, F. irregularis, and F. saprophytica. In short, these in silico genome analyses provide an insight into the PGP abilities of Frankia strains of known taxonomic provenance. This is the first study designed to establish the underlying genetic basis of cytokinin production in Frankia strains. Also, the discovery of additional genes in the biosynthetic gene cluster involved in cytokinin production opens up the prospect that Frankia may have novel molecular mechanisms for cytokinin biosynthesis.
PLOS One, 2009
Background: Ruminococcus flavefaciens is a predominant cellulolytic rumen bacterium, which forms a multi-enzyme cellulosome complex that could play an integral role in the ability of this bacterium to degrade plant cell wall polysaccharides. Identifying the major enzyme types involved in plant cell wall degradation is essential for gaining a better understanding of the cellulolytic capabilities of this organism as well as highlighting potential enzymes for application in improvement of livestock nutrition and for conversion of cellulosic biomass to liquid fuels.