Maize Genes Specifically Expressed in the Outermost Cells of Root Cap (original) (raw)
Related papers
Planta, 2000
The quiescent center is viewed as an architectural template in the root apical meristem of all angiosperm and gymnosperm root tips. In roots of Arabidopsis thaliana (L.) Heynh., the quiescent center inhibits differentiation of contacting initial cells and maintains the surrounding initial cells as stem cells. Here, the role of the quiescent center in the development of the maize (Zea mays L.) root cap has been further explored. Three maize root-specific genes were identified. Two of these were exclusively expressed in the root cap and one of them encoded a GDP-mannose-4,6-dehydratase. Most likely these two genes are structural, tissue-specific markers of the cap. The third gene, a putative glycine-rich cell wall protein, was expressed in the cap and in the root epidermis and, conceivably is a positional marker of the cap. Microsurgical and molecular data indicate that the quiescent center and cap initials may regulate the positional and structural expression of these genes in the cap and thereby control root cap development.
zrp2: a novel maize gene whose mRNA accumulates in the root cortex and mature stems
Plant Molecular Biology, 1997
A near full-length cDNA clone (pZRP2) was isolated from a cDNA library constructed from maize root mRNAs. The predicted polypeptide has a calculated molecular mass of 66 975 Da, is largely hydrophilic, and contains 26 repeats of a motif the consensus sequence of which is RKATTSYG[S][D/E][D/E][D/E][D/E][P]. The function of the putative protein remains to be elucidated. The ZRP2 mRNA accumulates to the highest levels in young roots, and is also present in mature roots and stems of maize. Further analysis of young roots indicates that the lowest level of ZRP2 mRNA is near the root tip, with relatively high levels throughout the remainder of the root. In situ hybridization reveals that ZRP2 mRNA accumulates predominantely in the cortical parenchyma cells of the root. In vitro nuclear run-on transcription experiments indicate a dramatically higher level of zrp2 gene transcription in 3-day old roots than in 5-day old leaves. A zrp2 genomic clone, which includes the transcribed region and 4.7 kb of upstream sequence, was isolated and characterized.
Transcription Profile Analyses Identify Genes and Pathways Central to Root Cap Functions in Maize
Plant Molecular Biology, 2006
Affymetrix GeneChips arrayed with about one-half (~23K) of the rice genes were used to profile gene transcription activity in three tissues comprising the maize root tip; the proximal meristem (PM), the quiescent center (QC), and the root cap (RC). Here we analyze the gene transcription profile of the RC, compared to both the PM and the QC, from three biological replicates. In the RC, a total of 669 genes were identified as being differentially upregulated, and 365 differentially downregulated. Real-time quantitative RT-PCR analysis was used to confirm upregulated genes in the RC. In addition, using the technique of laser microdissection (LMD) we localized upregulated gene expression to the lateral RC cells. Taken as a whole, transcription profile analyses revealed the upregulation in the maize RC of clusters of genes linked to major metabolic processes and pathways, including: (1) transport, both the export of carbohydrates and the uptake of nutrients; (2) sensing and responding to (often stressful) biotic and abiotic environmental stimuli; (3) integrating the responses of at least 3 major growth regulators (auxin, ethylene, jasmonic acid); (4) processing the large amount of carbohydrate transported into the RC. Although the profile data are derived using heterologous rice GeneChips, with about half of the total rice gene set, this study, nevertheless, provides a genomic scale characterization of the entire RC, and serves as a new platform from which to advance studies of the network of pathways operating in the maize RC.
The ZmRCP-1 promoter of maize provides root tip specific expression of transgenes in plantain
Bananas and plantains (Musa spp.) provide 25 % of the food energy requirements for more than 100 million people in Africa. Plant parasitic nematodes cause severe losses to the crop due to lack of control options. The sterile nature of Musa spp. hampers conventional breeding but makes the crop suitable for genetic engineering. A constitutively expressed synthetic peptide in transgenic plantain has provided resistance against nematodes. Previous work with the peptide in potato plants indicates that targeting expression to the root tip improves the efficacy of the defence mechanism. However, a promoter that will provide root tip specific expression of transgenes in a monocot plant, such as plantain, is not currently available. Here, we report the cloning and evaluation of the maize root cap-specific protein-1 (ZmRCP-1) promoter for root tip targeted expression of transgenes that provide a defence against plant parasitic nematodes in transgenic plantain. Results: Our findings indicate that the maize ZmRCP-1 promoter delivers expression of β-glucuronidase (gusA) gene in roots but not in leaves of transgenic plantains. In mature old roots, expression of gusA gene driven by ZmRCP-1 becomes limited to the root cap. Invasion by the nematode Radopholus similis does not modify Root Cap-specific Protein-1 promoter activity. Conclusions: Root cap-specific protein-1 promoter from maize can provide targeted expression of transgene for nematode resistance in transgenic plantain.
Comparative Transcriptome Profiling of Maize Coleoptilar Nodes during Shoot-Borne Root Initiation
PLANT PHYSIOLOGY, 2013
Maize (Zea mays) develops an extensive shoot-borne root system to secure water and nutrient uptake and to provide anchorage in the soil. In this study, early coleoptilar node (first shoot node) development was subjected to a detailed morphological and histological analysis. Subsequently, microarray profiling via hybridization of oligonucleotide microarrays representing transcripts of 31,355 unique maize genes at three early stages of coleoptilar node development was performed. These pairwise comparisons of wild-type versus mutant rootless concerning crown and seminal roots (rtcs) coleoptilar nodes that do not initiate shoot-borne roots revealed 828 unique transcripts that displayed RTCS-dependent expression. A stage-specific functional analysis revealed overrepresentation of “cell wall,” “stress,” and “development”-related transcripts among the differentially expressed genes. Differential expression of a subset of 15 of 828 genes identified by these microarray experiments was indepe...
The New phytologist, 2015
The paralogous maize (Zea mays) LBD (Lateral Organ Boundaries Domain) genes rtcs (rootless concerning crown and seminal roots) and rtcl (rtcs-like) emerged from an ancient whole-genome duplication. RTCS is a key regulator of crown root initiation. The diversity of expression, molecular interaction and phenotype of rtcs and rtcl were investigated. The rtcs and rtcl genes display highly correlated spatio-temporal expression patterns in roots, despite the significantly higher expression of rtcs. Both RTCS and RTCL proteins bind to LBD downstream promoters and act as transcription factors. In line with its auxin inducibility and binding to auxin response elements of rtcs and rtcl promoters, ARF34 (AUXIN RESPONSE FACTOR 34) acts as transcriptional activator. Yeast two-hybrid screening combined with bimolecular fluorescence complementation (BiFC) experiments revealed conserved and unique interaction partners of RTCS and RTCL. The rtcl mutation leads to defective shoot-borne root elongatio...
Plant Journal, 2008
The rth3 (roothairless 3) mutant is specifically affected in root hair elongation. We report here the cloning of the rth3 gene via a PCR-based strategy (amplification of insertion mutagenized sites) and demonstrate that it encodes a COBRA-like protein that displays all the structural features of a glycosylphosphatidylinositol anchor. Genes of the COBRA family are involved in various types of cell expansion and cell wall biosynthesis. The rth3 gene belongs to a monocot-specific clade of the COBRA gene family comprising two maize and two rice genes. While the rice (Oryza sativa) gene OsBC1L1 appears to be orthologous to rth3 based on sequence similarity (86% identity at the protein level) and maize/rice synteny, the maize (Zea mays L.) rth3-like gene does not appear to be a functional homolog of rth3 based on their distinct expression profiles. Massively parallel signature sequencing analysis detected rth3 expression in all analyzed tissues, but at relatively low levels, with the most abundant expression in primary roots where the root hair phenotype is manifested. In situ hybridization experiments confine rth3 expression to root hair-forming epidermal cells and lateral root primordia. Remarkably, in replicated field trials involving near-isogenic lines, the rth3 mutant conferred significant losses in grain yield.
Journal of Experimental Botany, 2015
Only little is known about target genes of auxin signalling downstream of the Aux/IAA-ARF module. In the present study, it has been demonstrated that maize lateral root primordia 1 (lrp1) encodes a transcriptional activator that is directly regulated by the Aux/IAA protein ROOTLESS WITH UNDETECTABLE MERISTEM 1 (RUM1). Expression of lrp1 is confined to early root primordia and meristems and is auxin-inducible. Based on its primary protein structure, LRP1 is predicted to be a transcription factor. This notion is supported by exclusive LRP1 localization in the nucleus and its ability to activate downstream gene activity. Based on the observation that lrp1 transcription is completely repressed in the semi-dominant gain of function mutant rum1, it was demonstrated that the lrp1 promoter is a direct target of RUM1 proteins. Subsequently, promoter activation assays indicated that RUM1 represses the expression of a GFP reporter fused to the native promoter of lrp1. Constitutive repression of lrp1 in rum1 mutants is a consequence of the stability of mutated rum1 proteins which cannot be degraded by the proteasome and thus constitutively bind to the lrp1 promoter and repress transcription. Taken together, the repression of the transcriptional activator lrp1 by direct binding of RUM1 to its promoter, together with specific expression of lrp1 in root meristems, suggests a function in maize root development via the RUM1-dependent auxin signalling pathway.
ZmEsr, a novel endosperm-specific gene expressed in a restricted region around the maize embryo
The Plant journal : for cell and molecular biology, 1997
A novel endosperm-specific gene named Esr (embryo surrounding region) has been isolated by differential display between early developmental stages of maize endosperms and embryos. It is expressed in a restricted region of the endosperm, surrounding the entire embryo at early stages (4 to 7 days after pollination, DAP) and ever-decreasing parts of the suspensor at subsequent stages. The expression starts at 4 DAP and is maintained until at least 28 DAP. A minimum of three Esr genes are present in the maize genome and at least two of them map to the short arm of chromosome 1 at position 56. The Esr genes contain no introns and show no significant nucleotide or amino acid sequence homologies to sequences in the databases. The open reading frames encode basic proteins of 14 kDa with presumptive signal peptides at their N-terminal followed by a hypervariable and a conserved region. The gene product may play a role in the nutrition of the developing embryo or in the establishment of a phy...
Theoretical and Applied Genetics, 1990
To provide an insight into the molecular basis of heterosis, we investigated gene expression in primary root tips of a heterotic maize hybrid (B73 × Mo17) and its parental lines (B73 and Mo17). This analysis was carried out (i) by differential plaque hybridization of a recombinant cDNA library made to poly(A) RNA isolated from B73 × Mo17 primary root tips, and (ii) by comparing with two-dimensional gel electrophoresis proteins synthesized in vitro in the rabbit reticulocyte system by poly(A) RNA isolated, at different stages of development, from the three genotypes. The results showed that there are sets of proteins and mRNAs that are differentially synthesized and expressed in the F1 primary root tips in comparison to the parental lines. Moreover, results from the survey of 21 major in-vitrosynthesized polypeptide variants, from mRNAs of primary root tips of the parental lines and their F1 hybrid, indicated that in seven instances hybrid proteins translated in vitro were more abundant or possibly new. In most of the remaining cases, hybrid spots were similar in intensity to the same protein produced by one of the two parental lines.