Brownification reduces oxygen gross primary production and community respiration and changes the phytoplankton community composition: An in situ mesocosm experiment with high‐frequency sensor measurements in a North Atlantic bay (original) (raw)

Short-term alteration of biotic and abiotic components of the pelagic system in a shallow bay produced by a strong natural hypoxia event

In January 2008 there was an intensive and extensive upwelling event in the southern Hum-boldt Current System. This event produced an intrusion of water with low dissolved oxygen into Coliumo Bay, which caused massive mortality and the beaching of pelagic and benthic organisms, including zooplankton. During this event, which lasted 3 to 5 days, we studied and evaluated the effect of the hypoxic water in the bay on the abundance of macrozoo-plankton, nanoplankton and microphytoplankton, the concentration of several nutrients and hydrographic conditions. At the beginning of the hypoxia event the water column had very low dissolved oxygen concentrations (<0.5 mL O 2 L-1), low temperatures and high salinity which are characteristics of the oxygen minimum zone from the Humboldt Current System. Redox, pH, nitrate, phosphate, silicate and chlorophyll-a values were the lowest, while nitrate and the phaeopigment values were the highest. The N:P ratio was below 16, and the abundance of nano-and microphytoplankton were at their lowest, the latter also with the lowest proportion of live organisms. Macrozooplankton had the greatest abundance during hypoxia, dominated mainly by crustacean, fish eggs and amphipods. The hypoxia event generated a strong short-term alteration of all biotic and abiotic components of the pelagic system in Coliumo Bay and the neighboring coastal zone. These negative effects associated with strong natural hypoxia events could have important consequences for the productivity and ecosystem functioning of the coastal zone of the Humboldt Current System if, as suggested by several models, winds favorable to upwelling should increase due to climate change. The effects of natural hypoxia in this coastal zone can be dramatic especially for pelagic and benthic species not adapted to endure conditions of low dissolved oxygen.

Eutrophication-Driven Deoxygenation in the Coastal Ocean

Oceanography, 2014

ABSTR ACT. Human activities, especially increased nutrient loads that set in motion a cascading chain of events related to eutrophication, accelerate development of hypoxia (lower oxygen concentration) in many areas of the world's coastal ocean. Climate changes and extreme weather events may modify hypoxia. Organismal and fisheries effects are at the heart of the coastal hypoxia issue, but more subtle regime shifts and trophic interactions are also cause for concern. The chemical milieu associated with declining dissolved oxygen concentrations affects the biogeochemical cycling of oxygen, carbon, nitrogen, phosphorus, silica, trace metals, and sulfide as observed in water column processes, shifts in sediment biogeochemistry, and increases in carbon, nitrogen, and sulfur, as well as shifts in their stable isotopes, in recently accumulated sediments.

Seawater browning alters community composition and reduces nutritional quality of plankton in a subarctic marine ecosystem

Canadian Journal of Fisheries and Aquatic Sciences, 2022

Inflows of coloured terrestrial organic matter cause seawater browning and reduced phytoplankton production in subarctic coastal ecosystems, potentially deteriorating the nutritional quality of marine food webs. We analyzed the fatty-acid (FA) compositions of seston and the zooplankton taxa Eurytemora affinis and cladocerans at three locations of the northern Baltic Sea. At the coastal and northerly locations, salinity and phosphorus concentrations were low, while concentrations of humic substances (i.e., terrestrial organic matter) were high. The southerly location showed the opposite trend. The ratio between alga-specific ω3 polyunsaturated FA and terrigenous monounsaturated FA (MUFA) in Eurytemora decreased from south to north, as did the ratio between the alga-specific docosahexaenoic acid (DHA) and terrigenous MUFA in cladocerans. With increasing humic substances, the biomass of DHA-rich phytoplankton decreased and the zooplankton MUFA content increased. Our results indicate th...

EUTROPHICATION IN COASTAL ECOSYSTEMS Ecosystem thresholds with hypoxia

Hypoxia is one of the common effects of eutrophication in coastal marine ecosystems and is becoming an increasingly prevalent problem worldwide. The causes of hypoxia are associated with excess nutrient inputs from both point and non-point sources, although the response of coastal marine ecosystems is strongly modulated by physical processes such as stratification and mixing. Changes in climate, particularly temperature, may also affect the susceptibility of coastal marine ecosystems to hypoxia. Hypoxia is a particularly severe disturbance because it causes death of biota and catastrophic changes in the ecosystem. Bottom water oxygen deficiency not only influences the habitat of living resources but also the biogeochemical processes that control nutrient concentrations in the water column. Increased phosphorus fluxes from sediments into overlying waters occur with hypoxia. In addition, reductions in the ability of ecosystems to remove nitrogen through denitrification and anaerobic ammonium oxidation may be related to hypoxia and could lead to acceleration in the rate of eutrophication. Three large coastal marine ecosystems (Chesapeake Bay, Northern Gulf of Mexico, and Danish Straits) all demonstrate thresholds whereby repeated hypoxic events have led to an increase in susceptibility of further hypoxia and accelerated eutrophication. Once hypoxia occurs, reoccurrence is likely and may be difficult to reverse. Therefore, elucidating ecosystem thresholds of hypoxia and linking them to nutrient inputs are necessary for the management of coastal marine ecosystems. Finally, projected increases in warming show an increase in the susceptibility of coastal marine ecosystems to hypoxia such that hypoxia will expand.

Oxygen production and carbon fixation in oligotrophic coastal bays and the relationship with gross and net primary production

Aquatic Microbial Ecology, 2008

Planktonic primary production and respiration in 2 coastal oligotrophic sites of the Northwest Mediterranean Sea were examined. Primary production was quantified using 3 methods (light and dark changes in dissolved O 2 , 18 O-labeling and 14 C uptake technique) using in situ bottle incubations. Gross primary production (GPP) based on the O 2 light-dark technique was not significantly different from that using the 18 O-labeling technique, indicating that the former technique provides accurate estimates of GPP in these environments. Respiration in the dark was not significantly different from respiration in the light. Total 14 C uptake (including the dissolved and particulate organic carbon fractions) during the whole duration of the light period approached GPP and consequently overestimated net primary production.